Spaces:
Sleeping
Sleeping
kargaranamir
commited on
Commit
β’
41c3c5a
1
Parent(s):
81771f9
add app
Browse files- README.md +5 -5
- app.py +113 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title: LangID
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.40.1
|
8 |
app_file: app.py
|
@@ -10,4 +10,4 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
---
|
2 |
+
title: LangID-LIME
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.40.1
|
8 |
app_file: app.py
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# """
|
2 |
+
# Author: Amir Hossein Kargaran
|
3 |
+
# Date: August, 2023
|
4 |
+
|
5 |
+
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
|
6 |
+
|
7 |
+
# MIT License
|
8 |
+
|
9 |
+
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980
|
10 |
+
# """
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
from io import BytesIO
|
14 |
+
import base64
|
15 |
+
from fasttext.FastText import _FastText
|
16 |
+
import re
|
17 |
+
import lime.lime_text
|
18 |
+
import numpy as np
|
19 |
+
from pathlib import Path
|
20 |
+
from huggingface_hub import hf_hub_download
|
21 |
+
|
22 |
+
# Load the FastText language identification model from Hugging Face Hub
|
23 |
+
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
24 |
+
|
25 |
+
# Create the FastText classifier
|
26 |
+
classifier = _FastText(model_path)
|
27 |
+
|
28 |
+
def remove_label_prefix(item):
|
29 |
+
"""
|
30 |
+
Remove label prefix from an item
|
31 |
+
"""
|
32 |
+
return item.replace('__label__', '')
|
33 |
+
|
34 |
+
def remove_label_prefix_list(input_list):
|
35 |
+
"""
|
36 |
+
Remove label prefix from list or list of list
|
37 |
+
"""
|
38 |
+
if isinstance(input_list[0], list):
|
39 |
+
# If the first element is a list, it's a list of lists
|
40 |
+
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
41 |
+
else:
|
42 |
+
# Otherwise, it's a simple list
|
43 |
+
return [remove_label_prefix(item) for item in input_list]
|
44 |
+
|
45 |
+
|
46 |
+
# Get the sorted class names from the classifier
|
47 |
+
class_names = remove_label_prefix_list(classifier.labels)
|
48 |
+
class_names = np.sort(class_names)
|
49 |
+
num_class = len(class_names)
|
50 |
+
|
51 |
+
|
52 |
+
def tokenize_string(string):
|
53 |
+
"""
|
54 |
+
Splits the string into words similar to FastText's method.
|
55 |
+
"""
|
56 |
+
return string.split()
|
57 |
+
|
58 |
+
explainer = lime.lime_text.LimeTextExplainer(
|
59 |
+
split_expression=tokenize_string,
|
60 |
+
bow=False,
|
61 |
+
class_names=class_names
|
62 |
+
)
|
63 |
+
|
64 |
+
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
65 |
+
"""
|
66 |
+
Converts FastText predictions into Scikit-Learn format predictions.
|
67 |
+
"""
|
68 |
+
res = []
|
69 |
+
labels, probabilities = classifier.predict(texts, num_class)
|
70 |
+
|
71 |
+
# Remove label prefix
|
72 |
+
labels = remove_label_prefix_list(labels)
|
73 |
+
|
74 |
+
for label, probs, text in zip(labels, probabilities, texts):
|
75 |
+
order = np.argsort(np.array(label))
|
76 |
+
res.append(probs[order])
|
77 |
+
|
78 |
+
return np.array(res)
|
79 |
+
|
80 |
+
def generate_explanation_html(input_sentence):
|
81 |
+
"""
|
82 |
+
Generates an explanation HTML file using LIME for the input sentence.
|
83 |
+
"""
|
84 |
+
preprocessed_sentence = input_sentence # No need to preprocess anymore
|
85 |
+
exp = explainer.explain_instance(
|
86 |
+
preprocessed_sentence,
|
87 |
+
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
88 |
+
top_labels=2,
|
89 |
+
num_features=20,
|
90 |
+
)
|
91 |
+
|
92 |
+
output_html_filename = "explanation.html"
|
93 |
+
exp.save_to_file(output_html_filename)
|
94 |
+
|
95 |
+
return output_html_filename
|
96 |
+
|
97 |
+
def download_html_file(html_filename):
|
98 |
+
"""
|
99 |
+
Downloads the content of the given HTML file.
|
100 |
+
"""
|
101 |
+
with open(html_filename, "rb") as file:
|
102 |
+
html_content = file.read()
|
103 |
+
return html_content
|
104 |
+
|
105 |
+
input_sentence = gr.inputs.Textbox(label="Input Sentence") # Change the label if needed
|
106 |
+
output_explanation = gr.outputs.File(label="Download Explanation HTML")
|
107 |
+
|
108 |
+
gr.Interface(
|
109 |
+
fn=generate_explanation_html,
|
110 |
+
inputs=input_sentence,
|
111 |
+
outputs=output_explanation,
|
112 |
+
allow_flagging='never'
|
113 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fasttext>=0.9.2
|
2 |
+
lime>=0.2.0,<0.3.0
|
3 |
+
huggingface-hub>=0.14.1
|
4 |
+
numpy>=1.24.3
|
5 |
+
gradio>=3.40.1
|