Spaces:
Sleeping
Sleeping
# """ | |
# Author: Amir Hossein Kargaran | |
# Date: August, 2023 | |
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification. | |
# MIT License | |
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980 | |
# """ | |
import gradio as gr | |
from io import BytesIO | |
import base64 | |
from fasttext.FastText import _FastText | |
import re | |
import lime.lime_text | |
import numpy as np | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
# Load the FastText language identification model from Hugging Face Hub | |
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") | |
# Create the FastText classifier | |
classifier = _FastText(model_path) | |
def remove_label_prefix(item): | |
""" | |
Remove label prefix from an item | |
""" | |
return item.replace('__label__', '') | |
def remove_label_prefix_list(input_list): | |
""" | |
Remove label prefix from list or list of list | |
""" | |
if isinstance(input_list[0], list): | |
# If the first element is a list, it's a list of lists | |
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list] | |
else: | |
# Otherwise, it's a simple list | |
return [remove_label_prefix(item) for item in input_list] | |
# Get the sorted class names from the classifier | |
class_names = remove_label_prefix_list(classifier.labels) | |
class_names = np.sort(class_names) | |
num_class = len(class_names) | |
def tokenize_string(string): | |
""" | |
Splits the string into words similar to FastText's method. | |
""" | |
return string.split() | |
explainer = lime.lime_text.LimeTextExplainer( | |
split_expression=tokenize_string, | |
bow=False, | |
class_names=class_names | |
) | |
def fasttext_prediction_in_sklearn_format(classifier, texts): | |
""" | |
Converts FastText predictions into Scikit-Learn format predictions. | |
""" | |
res = [] | |
labels, probabilities = classifier.predict(texts, num_class) | |
# Remove label prefix | |
labels = remove_label_prefix_list(labels) | |
for label, probs, text in zip(labels, probabilities, texts): | |
order = np.argsort(np.array(label)) | |
res.append(probs[order]) | |
return np.array(res) | |
def generate_explanation_html(input_sentence): | |
""" | |
Generates an explanation HTML file using LIME for the input sentence. | |
""" | |
preprocessed_sentence = input_sentence # No need to preprocess anymore | |
exp = explainer.explain_instance( | |
preprocessed_sentence, | |
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x), | |
top_labels=2, | |
num_features=20, | |
) | |
output_html_filename = "explanation.html" | |
exp.save_to_file(output_html_filename) | |
return output_html_filename | |
def download_html_file(html_filename): | |
""" | |
Downloads the content of the given HTML file. | |
""" | |
with open(html_filename, "rb") as file: | |
html_content = file.read() | |
return html_content | |
input_sentence = gr.inputs.Textbox(label="Input Sentence") # Change the label if needed | |
output_explanation = gr.outputs.File(label="Download Explanation HTML") | |
gr.Interface( | |
fn=generate_explanation_html, | |
inputs=input_sentence, | |
outputs=output_explanation, | |
allow_flagging='never' | |
).launch() | |