Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from fairseq.models import ( | |
FairseqEncoder, | |
FairseqEncoderDecoderModel, | |
FairseqIncrementalDecoder, | |
register_model, | |
register_model_architecture, | |
) | |
from fairseq.modules import LSTMCellWithZoneOut, LocationAttention | |
logger = logging.getLogger(__name__) | |
def encoder_init(m): | |
if isinstance(m, nn.Conv1d): | |
nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu")) | |
class Tacotron2Encoder(FairseqEncoder): | |
def __init__(self, args, src_dict, embed_speaker): | |
super().__init__(src_dict) | |
self.padding_idx = src_dict.pad() | |
self.embed_speaker = embed_speaker | |
self.spk_emb_proj = None | |
if embed_speaker is not None: | |
self.spk_emb_proj = nn.Linear( | |
args.encoder_embed_dim + args.speaker_embed_dim, args.encoder_embed_dim | |
) | |
self.embed_tokens = nn.Embedding( | |
len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx | |
) | |
assert args.encoder_conv_kernel_size % 2 == 1 | |
self.convolutions = nn.ModuleList( | |
nn.Sequential( | |
nn.Conv1d( | |
args.encoder_embed_dim, | |
args.encoder_embed_dim, | |
kernel_size=args.encoder_conv_kernel_size, | |
padding=((args.encoder_conv_kernel_size - 1) // 2), | |
), | |
nn.BatchNorm1d(args.encoder_embed_dim), | |
nn.ReLU(), | |
nn.Dropout(args.encoder_dropout), | |
) | |
for _ in range(args.encoder_conv_layers) | |
) | |
self.lstm = nn.LSTM( | |
args.encoder_embed_dim, | |
args.encoder_embed_dim // 2, | |
num_layers=args.encoder_lstm_layers, | |
batch_first=True, | |
bidirectional=True, | |
) | |
self.apply(encoder_init) | |
def forward(self, src_tokens, src_lengths=None, speaker=None, **kwargs): | |
x = self.embed_tokens(src_tokens) | |
x = x.transpose(1, 2).contiguous() # B x T x C -> B x C x T | |
for conv in self.convolutions: | |
x = conv(x) | |
x = x.transpose(1, 2).contiguous() # B x C x T -> B x T x C | |
src_lengths = src_lengths.cpu().long() | |
x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True) | |
x = self.lstm(x)[0] | |
x = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)[0] | |
encoder_padding_mask = src_tokens.eq(self.padding_idx) | |
if self.embed_speaker is not None: | |
seq_len, bsz, _ = x.size() | |
emb = self.embed_speaker(speaker).expand(seq_len, bsz, -1) | |
x = self.spk_emb_proj(torch.cat([x, emb], dim=2)) | |
return { | |
"encoder_out": [x], # B x T x C | |
"encoder_padding_mask": encoder_padding_mask, # B x T | |
} | |
class Prenet(nn.Module): | |
def __init__(self, in_dim, n_layers, n_units, dropout): | |
super().__init__() | |
self.layers = nn.ModuleList( | |
nn.Sequential(nn.Linear(in_dim if i == 0 else n_units, n_units), nn.ReLU()) | |
for i in range(n_layers) | |
) | |
self.dropout = dropout | |
def forward(self, x): | |
for layer in self.layers: | |
x = F.dropout(layer(x), p=self.dropout) # always applies dropout | |
return x | |
class Postnet(nn.Module): | |
def __init__(self, in_dim, n_channels, kernel_size, n_layers, dropout): | |
super(Postnet, self).__init__() | |
self.convolutions = nn.ModuleList() | |
assert kernel_size % 2 == 1 | |
for i in range(n_layers): | |
cur_layers = ( | |
[ | |
nn.Conv1d( | |
in_dim if i == 0 else n_channels, | |
n_channels if i < n_layers - 1 else in_dim, | |
kernel_size=kernel_size, | |
padding=((kernel_size - 1) // 2), | |
), | |
nn.BatchNorm1d(n_channels if i < n_layers - 1 else in_dim), | |
] | |
+ ([nn.Tanh()] if i < n_layers - 1 else []) | |
+ [nn.Dropout(dropout)] | |
) | |
nn.init.xavier_uniform_( | |
cur_layers[0].weight, | |
torch.nn.init.calculate_gain("tanh" if i < n_layers - 1 else "linear"), | |
) | |
self.convolutions.append(nn.Sequential(*cur_layers)) | |
def forward(self, x): | |
x = x.transpose(1, 2) # B x T x C -> B x C x T | |
for conv in self.convolutions: | |
x = conv(x) | |
return x.transpose(1, 2) | |
def decoder_init(m): | |
if isinstance(m, torch.nn.Conv1d): | |
nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("tanh")) | |
class Tacotron2Decoder(FairseqIncrementalDecoder): | |
def __init__(self, args, src_dict): | |
super().__init__(None) | |
self.args = args | |
self.n_frames_per_step = args.n_frames_per_step | |
self.out_dim = args.output_frame_dim * args.n_frames_per_step | |
self.prenet = Prenet( | |
self.out_dim, args.prenet_layers, args.prenet_dim, args.prenet_dropout | |
) | |
# take prev_context, prev_frame, (speaker embedding) as input | |
self.attention_lstm = LSTMCellWithZoneOut( | |
args.zoneout, | |
args.prenet_dim + args.encoder_embed_dim, | |
args.decoder_lstm_dim, | |
) | |
# take attention_lstm output, attention_state, encoder_out as input | |
self.attention = LocationAttention( | |
args.attention_dim, | |
args.encoder_embed_dim, | |
args.decoder_lstm_dim, | |
(1 + int(args.attention_use_cumprob)), | |
args.attention_conv_dim, | |
args.attention_conv_kernel_size, | |
) | |
# take attention_lstm output, context, (gated_latent) as input | |
self.lstm = nn.ModuleList( | |
LSTMCellWithZoneOut( | |
args.zoneout, | |
args.encoder_embed_dim + args.decoder_lstm_dim, | |
args.decoder_lstm_dim, | |
) | |
for i in range(args.decoder_lstm_layers) | |
) | |
proj_in_dim = args.encoder_embed_dim + args.decoder_lstm_dim | |
self.feat_proj = nn.Linear(proj_in_dim, self.out_dim) | |
self.eos_proj = nn.Linear(proj_in_dim, 1) | |
self.postnet = Postnet( | |
self.out_dim, | |
args.postnet_conv_dim, | |
args.postnet_conv_kernel_size, | |
args.postnet_layers, | |
args.postnet_dropout, | |
) | |
self.ctc_proj = None | |
if getattr(args, "ctc_weight", 0.0) > 0.0: | |
self.ctc_proj = nn.Linear(self.out_dim, len(src_dict)) | |
self.apply(decoder_init) | |
def _get_states(self, incremental_state, enc_out): | |
bsz, in_len, _ = enc_out.size() | |
alstm_h = self.get_incremental_state(incremental_state, "alstm_h") | |
if alstm_h is None: | |
alstm_h = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) | |
alstm_c = self.get_incremental_state(incremental_state, "alstm_c") | |
if alstm_c is None: | |
alstm_c = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) | |
lstm_h = self.get_incremental_state(incremental_state, "lstm_h") | |
if lstm_h is None: | |
lstm_h = [ | |
enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) | |
for _ in range(self.args.decoder_lstm_layers) | |
] | |
lstm_c = self.get_incremental_state(incremental_state, "lstm_c") | |
if lstm_c is None: | |
lstm_c = [ | |
enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) | |
for _ in range(self.args.decoder_lstm_layers) | |
] | |
attn_w = self.get_incremental_state(incremental_state, "attn_w") | |
if attn_w is None: | |
attn_w = enc_out.new_zeros(bsz, in_len) | |
attn_w_cum = self.get_incremental_state(incremental_state, "attn_w_cum") | |
if attn_w_cum is None: | |
attn_w_cum = enc_out.new_zeros(bsz, in_len) | |
return alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum | |
def _get_init_attn_c(self, enc_out, enc_mask): | |
bsz = enc_out.size(0) | |
if self.args.init_attn_c == "zero": | |
return enc_out.new_zeros(bsz, self.args.encoder_embed_dim) | |
elif self.args.init_attn_c == "avg": | |
enc_w = (~enc_mask).type(enc_out.type()) | |
enc_w = enc_w / enc_w.sum(dim=1, keepdim=True) | |
return torch.sum(enc_out * enc_w.unsqueeze(2), dim=1) | |
else: | |
raise ValueError(f"{self.args.init_attn_c} not supported") | |
def forward( | |
self, | |
prev_output_tokens, | |
encoder_out=None, | |
incremental_state=None, | |
target_lengths=None, | |
**kwargs, | |
): | |
enc_mask = encoder_out["encoder_padding_mask"] | |
enc_out = encoder_out["encoder_out"][0] | |
in_len = enc_out.size(1) | |
if incremental_state is not None: | |
prev_output_tokens = prev_output_tokens[:, -1:, :] | |
bsz, out_len, _ = prev_output_tokens.size() | |
prenet_out = self.prenet(prev_output_tokens) | |
(alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum) = self._get_states( | |
incremental_state, enc_out | |
) | |
attn_ctx = self._get_init_attn_c(enc_out, enc_mask) | |
attn_out = enc_out.new_zeros(bsz, in_len, out_len) | |
feat_out = enc_out.new_zeros(bsz, out_len, self.out_dim) | |
eos_out = enc_out.new_zeros(bsz, out_len) | |
for t in range(out_len): | |
alstm_in = torch.cat((attn_ctx, prenet_out[:, t, :]), dim=1) | |
alstm_h, alstm_c = self.attention_lstm(alstm_in, (alstm_h, alstm_c)) | |
attn_state = attn_w.unsqueeze(1) | |
if self.args.attention_use_cumprob: | |
attn_state = torch.stack((attn_w, attn_w_cum), dim=1) | |
attn_ctx, attn_w = self.attention(enc_out, enc_mask, alstm_h, attn_state) | |
attn_w_cum = attn_w_cum + attn_w | |
attn_out[:, :, t] = attn_w | |
for i, cur_lstm in enumerate(self.lstm): | |
if i == 0: | |
lstm_in = torch.cat((attn_ctx, alstm_h), dim=1) | |
else: | |
lstm_in = torch.cat((attn_ctx, lstm_h[i - 1]), dim=1) | |
lstm_h[i], lstm_c[i] = cur_lstm(lstm_in, (lstm_h[i], lstm_c[i])) | |
proj_in = torch.cat((attn_ctx, lstm_h[-1]), dim=1) | |
feat_out[:, t, :] = self.feat_proj(proj_in) | |
eos_out[:, t] = self.eos_proj(proj_in).squeeze(1) | |
self.attention.clear_cache() | |
self.set_incremental_state(incremental_state, "alstm_h", alstm_h) | |
self.set_incremental_state(incremental_state, "alstm_c", alstm_c) | |
self.set_incremental_state(incremental_state, "lstm_h", lstm_h) | |
self.set_incremental_state(incremental_state, "lstm_c", lstm_c) | |
self.set_incremental_state(incremental_state, "attn_w", attn_w) | |
self.set_incremental_state(incremental_state, "attn_w_cum", attn_w_cum) | |
post_feat_out = feat_out + self.postnet(feat_out) | |
eos_out = eos_out.view(bsz, out_len, 1) | |
return post_feat_out, eos_out, {"attn": attn_out, "feature_out": feat_out} | |
class Tacotron2Model(FairseqEncoderDecoderModel): | |
""" | |
Implementation for https://arxiv.org/pdf/1712.05884.pdf | |
""" | |
def add_args(parser): | |
# encoder | |
parser.add_argument("--encoder-dropout", type=float) | |
parser.add_argument("--encoder-embed-dim", type=int) | |
parser.add_argument("--encoder-conv-layers", type=int) | |
parser.add_argument("--encoder-conv-kernel-size", type=int) | |
parser.add_argument("--encoder-lstm-layers", type=int) | |
# decoder | |
parser.add_argument("--attention-dim", type=int) | |
parser.add_argument("--attention-conv-dim", type=int) | |
parser.add_argument("--attention-conv-kernel-size", type=int) | |
parser.add_argument("--prenet-dropout", type=float) | |
parser.add_argument("--prenet-layers", type=int) | |
parser.add_argument("--prenet-dim", type=int) | |
parser.add_argument("--postnet-dropout", type=float) | |
parser.add_argument("--postnet-layers", type=int) | |
parser.add_argument("--postnet-conv-dim", type=int) | |
parser.add_argument("--postnet-conv-kernel-size", type=int) | |
parser.add_argument("--init-attn-c", type=str) | |
parser.add_argument("--attention-use-cumprob", action="store_true") | |
parser.add_argument("--zoneout", type=float) | |
parser.add_argument("--decoder-lstm-layers", type=int) | |
parser.add_argument("--decoder-lstm-dim", type=int) | |
parser.add_argument("--output-frame-dim", type=int) | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._num_updates = 0 | |
def build_model(cls, args, task): | |
embed_speaker = task.get_speaker_embeddings(args) | |
encoder = Tacotron2Encoder(args, task.src_dict, embed_speaker) | |
decoder = Tacotron2Decoder(args, task.src_dict) | |
return cls(encoder, decoder) | |
def forward_encoder(self, src_tokens, src_lengths, **kwargs): | |
return self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) | |
def set_num_updates(self, num_updates): | |
super().set_num_updates(num_updates) | |
self._num_updates = num_updates | |
def base_architecture(args): | |
# encoder | |
args.encoder_dropout = getattr(args, "encoder_dropout", 0.5) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_conv_layers = getattr(args, "encoder_conv_layers", 3) | |
args.encoder_conv_kernel_size = getattr(args, "encoder_conv_kernel_size", 5) | |
args.encoder_lstm_layers = getattr(args, "encoder_lstm_layers", 1) | |
# decoder | |
args.attention_dim = getattr(args, "attention_dim", 128) | |
args.attention_conv_dim = getattr(args, "attention_conv_dim", 32) | |
args.attention_conv_kernel_size = getattr(args, "attention_conv_kernel_size", 15) | |
args.prenet_dropout = getattr(args, "prenet_dropout", 0.5) | |
args.prenet_layers = getattr(args, "prenet_layers", 2) | |
args.prenet_dim = getattr(args, "prenet_dim", 256) | |
args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) | |
args.postnet_layers = getattr(args, "postnet_layers", 5) | |
args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) | |
args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5) | |
args.init_attn_c = getattr(args, "init_attn_c", "zero") | |
args.attention_use_cumprob = getattr(args, "attention_use_cumprob", True) | |
args.zoneout = getattr(args, "zoneout", 0.1) | |
args.decoder_lstm_layers = getattr(args, "decoder_lstm_layers", 2) | |
args.decoder_lstm_dim = getattr(args, "decoder_lstm_dim", 1024) | |
args.output_frame_dim = getattr(args, "output_frame_dim", 80) | |