TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
from torch import nn
from torch.nn import functional as F
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import LSTMCellWithZoneOut, LocationAttention
logger = logging.getLogger(__name__)
def encoder_init(m):
if isinstance(m, nn.Conv1d):
nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu"))
class Tacotron2Encoder(FairseqEncoder):
def __init__(self, args, src_dict, embed_speaker):
super().__init__(src_dict)
self.padding_idx = src_dict.pad()
self.embed_speaker = embed_speaker
self.spk_emb_proj = None
if embed_speaker is not None:
self.spk_emb_proj = nn.Linear(
args.encoder_embed_dim + args.speaker_embed_dim, args.encoder_embed_dim
)
self.embed_tokens = nn.Embedding(
len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx
)
assert args.encoder_conv_kernel_size % 2 == 1
self.convolutions = nn.ModuleList(
nn.Sequential(
nn.Conv1d(
args.encoder_embed_dim,
args.encoder_embed_dim,
kernel_size=args.encoder_conv_kernel_size,
padding=((args.encoder_conv_kernel_size - 1) // 2),
),
nn.BatchNorm1d(args.encoder_embed_dim),
nn.ReLU(),
nn.Dropout(args.encoder_dropout),
)
for _ in range(args.encoder_conv_layers)
)
self.lstm = nn.LSTM(
args.encoder_embed_dim,
args.encoder_embed_dim // 2,
num_layers=args.encoder_lstm_layers,
batch_first=True,
bidirectional=True,
)
self.apply(encoder_init)
def forward(self, src_tokens, src_lengths=None, speaker=None, **kwargs):
x = self.embed_tokens(src_tokens)
x = x.transpose(1, 2).contiguous() # B x T x C -> B x C x T
for conv in self.convolutions:
x = conv(x)
x = x.transpose(1, 2).contiguous() # B x C x T -> B x T x C
src_lengths = src_lengths.cpu().long()
x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True)
x = self.lstm(x)[0]
x = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)[0]
encoder_padding_mask = src_tokens.eq(self.padding_idx)
if self.embed_speaker is not None:
seq_len, bsz, _ = x.size()
emb = self.embed_speaker(speaker).expand(seq_len, bsz, -1)
x = self.spk_emb_proj(torch.cat([x, emb], dim=2))
return {
"encoder_out": [x], # B x T x C
"encoder_padding_mask": encoder_padding_mask, # B x T
}
class Prenet(nn.Module):
def __init__(self, in_dim, n_layers, n_units, dropout):
super().__init__()
self.layers = nn.ModuleList(
nn.Sequential(nn.Linear(in_dim if i == 0 else n_units, n_units), nn.ReLU())
for i in range(n_layers)
)
self.dropout = dropout
def forward(self, x):
for layer in self.layers:
x = F.dropout(layer(x), p=self.dropout) # always applies dropout
return x
class Postnet(nn.Module):
def __init__(self, in_dim, n_channels, kernel_size, n_layers, dropout):
super(Postnet, self).__init__()
self.convolutions = nn.ModuleList()
assert kernel_size % 2 == 1
for i in range(n_layers):
cur_layers = (
[
nn.Conv1d(
in_dim if i == 0 else n_channels,
n_channels if i < n_layers - 1 else in_dim,
kernel_size=kernel_size,
padding=((kernel_size - 1) // 2),
),
nn.BatchNorm1d(n_channels if i < n_layers - 1 else in_dim),
]
+ ([nn.Tanh()] if i < n_layers - 1 else [])
+ [nn.Dropout(dropout)]
)
nn.init.xavier_uniform_(
cur_layers[0].weight,
torch.nn.init.calculate_gain("tanh" if i < n_layers - 1 else "linear"),
)
self.convolutions.append(nn.Sequential(*cur_layers))
def forward(self, x):
x = x.transpose(1, 2) # B x T x C -> B x C x T
for conv in self.convolutions:
x = conv(x)
return x.transpose(1, 2)
def decoder_init(m):
if isinstance(m, torch.nn.Conv1d):
nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("tanh"))
class Tacotron2Decoder(FairseqIncrementalDecoder):
def __init__(self, args, src_dict):
super().__init__(None)
self.args = args
self.n_frames_per_step = args.n_frames_per_step
self.out_dim = args.output_frame_dim * args.n_frames_per_step
self.prenet = Prenet(
self.out_dim, args.prenet_layers, args.prenet_dim, args.prenet_dropout
)
# take prev_context, prev_frame, (speaker embedding) as input
self.attention_lstm = LSTMCellWithZoneOut(
args.zoneout,
args.prenet_dim + args.encoder_embed_dim,
args.decoder_lstm_dim,
)
# take attention_lstm output, attention_state, encoder_out as input
self.attention = LocationAttention(
args.attention_dim,
args.encoder_embed_dim,
args.decoder_lstm_dim,
(1 + int(args.attention_use_cumprob)),
args.attention_conv_dim,
args.attention_conv_kernel_size,
)
# take attention_lstm output, context, (gated_latent) as input
self.lstm = nn.ModuleList(
LSTMCellWithZoneOut(
args.zoneout,
args.encoder_embed_dim + args.decoder_lstm_dim,
args.decoder_lstm_dim,
)
for i in range(args.decoder_lstm_layers)
)
proj_in_dim = args.encoder_embed_dim + args.decoder_lstm_dim
self.feat_proj = nn.Linear(proj_in_dim, self.out_dim)
self.eos_proj = nn.Linear(proj_in_dim, 1)
self.postnet = Postnet(
self.out_dim,
args.postnet_conv_dim,
args.postnet_conv_kernel_size,
args.postnet_layers,
args.postnet_dropout,
)
self.ctc_proj = None
if getattr(args, "ctc_weight", 0.0) > 0.0:
self.ctc_proj = nn.Linear(self.out_dim, len(src_dict))
self.apply(decoder_init)
def _get_states(self, incremental_state, enc_out):
bsz, in_len, _ = enc_out.size()
alstm_h = self.get_incremental_state(incremental_state, "alstm_h")
if alstm_h is None:
alstm_h = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
alstm_c = self.get_incremental_state(incremental_state, "alstm_c")
if alstm_c is None:
alstm_c = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
lstm_h = self.get_incremental_state(incremental_state, "lstm_h")
if lstm_h is None:
lstm_h = [
enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
for _ in range(self.args.decoder_lstm_layers)
]
lstm_c = self.get_incremental_state(incremental_state, "lstm_c")
if lstm_c is None:
lstm_c = [
enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
for _ in range(self.args.decoder_lstm_layers)
]
attn_w = self.get_incremental_state(incremental_state, "attn_w")
if attn_w is None:
attn_w = enc_out.new_zeros(bsz, in_len)
attn_w_cum = self.get_incremental_state(incremental_state, "attn_w_cum")
if attn_w_cum is None:
attn_w_cum = enc_out.new_zeros(bsz, in_len)
return alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum
def _get_init_attn_c(self, enc_out, enc_mask):
bsz = enc_out.size(0)
if self.args.init_attn_c == "zero":
return enc_out.new_zeros(bsz, self.args.encoder_embed_dim)
elif self.args.init_attn_c == "avg":
enc_w = (~enc_mask).type(enc_out.type())
enc_w = enc_w / enc_w.sum(dim=1, keepdim=True)
return torch.sum(enc_out * enc_w.unsqueeze(2), dim=1)
else:
raise ValueError(f"{self.args.init_attn_c} not supported")
def forward(
self,
prev_output_tokens,
encoder_out=None,
incremental_state=None,
target_lengths=None,
**kwargs,
):
enc_mask = encoder_out["encoder_padding_mask"]
enc_out = encoder_out["encoder_out"][0]
in_len = enc_out.size(1)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:, :]
bsz, out_len, _ = prev_output_tokens.size()
prenet_out = self.prenet(prev_output_tokens)
(alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum) = self._get_states(
incremental_state, enc_out
)
attn_ctx = self._get_init_attn_c(enc_out, enc_mask)
attn_out = enc_out.new_zeros(bsz, in_len, out_len)
feat_out = enc_out.new_zeros(bsz, out_len, self.out_dim)
eos_out = enc_out.new_zeros(bsz, out_len)
for t in range(out_len):
alstm_in = torch.cat((attn_ctx, prenet_out[:, t, :]), dim=1)
alstm_h, alstm_c = self.attention_lstm(alstm_in, (alstm_h, alstm_c))
attn_state = attn_w.unsqueeze(1)
if self.args.attention_use_cumprob:
attn_state = torch.stack((attn_w, attn_w_cum), dim=1)
attn_ctx, attn_w = self.attention(enc_out, enc_mask, alstm_h, attn_state)
attn_w_cum = attn_w_cum + attn_w
attn_out[:, :, t] = attn_w
for i, cur_lstm in enumerate(self.lstm):
if i == 0:
lstm_in = torch.cat((attn_ctx, alstm_h), dim=1)
else:
lstm_in = torch.cat((attn_ctx, lstm_h[i - 1]), dim=1)
lstm_h[i], lstm_c[i] = cur_lstm(lstm_in, (lstm_h[i], lstm_c[i]))
proj_in = torch.cat((attn_ctx, lstm_h[-1]), dim=1)
feat_out[:, t, :] = self.feat_proj(proj_in)
eos_out[:, t] = self.eos_proj(proj_in).squeeze(1)
self.attention.clear_cache()
self.set_incremental_state(incremental_state, "alstm_h", alstm_h)
self.set_incremental_state(incremental_state, "alstm_c", alstm_c)
self.set_incremental_state(incremental_state, "lstm_h", lstm_h)
self.set_incremental_state(incremental_state, "lstm_c", lstm_c)
self.set_incremental_state(incremental_state, "attn_w", attn_w)
self.set_incremental_state(incremental_state, "attn_w_cum", attn_w_cum)
post_feat_out = feat_out + self.postnet(feat_out)
eos_out = eos_out.view(bsz, out_len, 1)
return post_feat_out, eos_out, {"attn": attn_out, "feature_out": feat_out}
@register_model("tacotron_2")
class Tacotron2Model(FairseqEncoderDecoderModel):
"""
Implementation for https://arxiv.org/pdf/1712.05884.pdf
"""
@staticmethod
def add_args(parser):
# encoder
parser.add_argument("--encoder-dropout", type=float)
parser.add_argument("--encoder-embed-dim", type=int)
parser.add_argument("--encoder-conv-layers", type=int)
parser.add_argument("--encoder-conv-kernel-size", type=int)
parser.add_argument("--encoder-lstm-layers", type=int)
# decoder
parser.add_argument("--attention-dim", type=int)
parser.add_argument("--attention-conv-dim", type=int)
parser.add_argument("--attention-conv-kernel-size", type=int)
parser.add_argument("--prenet-dropout", type=float)
parser.add_argument("--prenet-layers", type=int)
parser.add_argument("--prenet-dim", type=int)
parser.add_argument("--postnet-dropout", type=float)
parser.add_argument("--postnet-layers", type=int)
parser.add_argument("--postnet-conv-dim", type=int)
parser.add_argument("--postnet-conv-kernel-size", type=int)
parser.add_argument("--init-attn-c", type=str)
parser.add_argument("--attention-use-cumprob", action="store_true")
parser.add_argument("--zoneout", type=float)
parser.add_argument("--decoder-lstm-layers", type=int)
parser.add_argument("--decoder-lstm-dim", type=int)
parser.add_argument("--output-frame-dim", type=int)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._num_updates = 0
@classmethod
def build_model(cls, args, task):
embed_speaker = task.get_speaker_embeddings(args)
encoder = Tacotron2Encoder(args, task.src_dict, embed_speaker)
decoder = Tacotron2Decoder(args, task.src_dict)
return cls(encoder, decoder)
def forward_encoder(self, src_tokens, src_lengths, **kwargs):
return self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
def set_num_updates(self, num_updates):
super().set_num_updates(num_updates)
self._num_updates = num_updates
@register_model_architecture("tacotron_2", "tacotron_2")
def base_architecture(args):
# encoder
args.encoder_dropout = getattr(args, "encoder_dropout", 0.5)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_conv_layers = getattr(args, "encoder_conv_layers", 3)
args.encoder_conv_kernel_size = getattr(args, "encoder_conv_kernel_size", 5)
args.encoder_lstm_layers = getattr(args, "encoder_lstm_layers", 1)
# decoder
args.attention_dim = getattr(args, "attention_dim", 128)
args.attention_conv_dim = getattr(args, "attention_conv_dim", 32)
args.attention_conv_kernel_size = getattr(args, "attention_conv_kernel_size", 15)
args.prenet_dropout = getattr(args, "prenet_dropout", 0.5)
args.prenet_layers = getattr(args, "prenet_layers", 2)
args.prenet_dim = getattr(args, "prenet_dim", 256)
args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
args.postnet_layers = getattr(args, "postnet_layers", 5)
args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
args.init_attn_c = getattr(args, "init_attn_c", "zero")
args.attention_use_cumprob = getattr(args, "attention_use_cumprob", True)
args.zoneout = getattr(args, "zoneout", 0.1)
args.decoder_lstm_layers = getattr(args, "decoder_lstm_layers", 2)
args.decoder_lstm_dim = getattr(args, "decoder_lstm_dim", 1024)
args.output_frame_dim = getattr(args, "output_frame_dim", 80)