img2img_with_RDM_model / cool_models.py
kai-2054's picture
Create cool_models.py
6eb7da6 verified
import torch
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
import lpips
import clip
from encoders.modules import BERTEmbedder
from models.clipseg import CLIPDensePredT
from huggingface_hub import hf_hub_download
STEPS = 100
USE_DDPM = False
USE_DDIM = False
USE_CPU = False
CLIP_SEG_PATH = './weights/rd64-uni.pth'
CLIP_GUIDANCE = False
def make_models():
segmodel = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)
segmodel.eval()
# non-strict, because we only stored decoder weights (not CLIP weights)
segmodel.load_state_dict(torch.load(CLIP_SEG_PATH, map_location=torch.device('cpu')), strict=False)
# segmodel.save_pretrained("./weights/hf_clipseg")
device = torch.device('cuda:0' if (torch.cuda.is_available() and not USE_CPU) else 'cpu')
print('Using device:', device)
hf_inpaint_path = hf_hub_download("alvanlii/rdm_inpaint", "inpaint.pt")
model_state_dict = torch.load(hf_inpaint_path, map_location='cpu')
# print(
# 'hey',
# 'clip_proj.weight' in model_state_dict, # True
# model_state_dict['input_blocks.0.0.weight'].shape[1] == 8, # True
# 'external_block.0.0.weight' in model_state_dict # False
# )
model_params = {
'attention_resolutions': '32,16,8',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': STEPS, # Modify this value to decrease the number of
# timesteps.
'image_size': 32,
'learn_sigma': False,
'noise_schedule': 'linear',
'num_channels': 320,
'num_heads': 8,
'num_res_blocks': 2,
'resblock_updown': False,
'use_fp16': False,
'use_scale_shift_norm': False,
'clip_embed_dim': 768,
'image_condition': True,
'super_res_condition': False,
}
if USE_DDPM:
model_params['timestep_respacing'] = '1000'
if USE_DDIM:
if STEPS:
model_params['timestep_respacing'] = 'ddim'+str(STEPS)
else:
model_params['timestep_respacing'] = 'ddim50'
elif STEPS:
model_params['timestep_respacing'] = str(STEPS)
model_config = model_and_diffusion_defaults()
model_config.update(model_params)
if USE_CPU:
model_config['use_fp16'] = False
model, diffusion = create_model_and_diffusion(**model_config)
model.load_state_dict(model_state_dict, strict=False)
model.requires_grad_(CLIP_GUIDANCE).eval().to(device)
if model_config['use_fp16']:
model.convert_to_fp16()
else:
model.convert_to_fp32()
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
lpips_model = lpips.LPIPS(net="vgg").to(device)
hf_kl_path = hf_hub_download("alvanlii/rdm_inpaint", "kl-f8.pt")
ldm = torch.load(hf_kl_path, map_location="cpu")
# torch.save(ldm, "./weights/hf_ldm")
ldm.to(device)
ldm.eval()
ldm.requires_grad_(CLIP_GUIDANCE)
set_requires_grad(ldm, CLIP_GUIDANCE)
bert = BERTEmbedder(1280, 32)
hf_bert_path = hf_hub_download("alvanlii/rdm_inpaint", 'bert.pt')
# bert = BERTEmbedder.from_pretrained("alvanlii/rdm_bert")
sd = torch.load(hf_bert_path, map_location="cpu")
bert.load_state_dict(sd)
# bert.save_pretrained("./weights/hf_bert")
bert.to(device)
bert.half().eval()
set_requires_grad(bert, False)
clip_model, clip_preprocess = clip.load('ViT-L/14', device=device, jit=False)
clip_model.eval().requires_grad_(False)
return segmodel, model, diffusion, ldm, bert, clip_model, model_params
if __name__ == "__main__":
make_models()