Spaces:
Runtime error
Runtime error
Create cool_models.py
Browse files- cool_models.py +123 -0
cool_models.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
|
3 |
+
import lpips
|
4 |
+
import clip
|
5 |
+
|
6 |
+
|
7 |
+
from encoders.modules import BERTEmbedder
|
8 |
+
from models.clipseg import CLIPDensePredT
|
9 |
+
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
STEPS = 100
|
13 |
+
USE_DDPM = False
|
14 |
+
USE_DDIM = False
|
15 |
+
USE_CPU = False
|
16 |
+
CLIP_SEG_PATH = './weights/rd64-uni.pth'
|
17 |
+
CLIP_GUIDANCE = False
|
18 |
+
|
19 |
+
def make_models():
|
20 |
+
segmodel = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)
|
21 |
+
segmodel.eval()
|
22 |
+
|
23 |
+
# non-strict, because we only stored decoder weights (not CLIP weights)
|
24 |
+
segmodel.load_state_dict(torch.load(CLIP_SEG_PATH, map_location=torch.device('cpu')), strict=False)
|
25 |
+
# segmodel.save_pretrained("./weights/hf_clipseg")
|
26 |
+
|
27 |
+
device = torch.device('cuda:0' if (torch.cuda.is_available() and not USE_CPU) else 'cpu')
|
28 |
+
print('Using device:', device)
|
29 |
+
|
30 |
+
hf_inpaint_path = hf_hub_download("alvanlii/rdm_inpaint", "inpaint.pt")
|
31 |
+
model_state_dict = torch.load(hf_inpaint_path, map_location='cpu')
|
32 |
+
|
33 |
+
# print(
|
34 |
+
# 'hey',
|
35 |
+
# 'clip_proj.weight' in model_state_dict, # True
|
36 |
+
# model_state_dict['input_blocks.0.0.weight'].shape[1] == 8, # True
|
37 |
+
# 'external_block.0.0.weight' in model_state_dict # False
|
38 |
+
# )
|
39 |
+
|
40 |
+
model_params = {
|
41 |
+
'attention_resolutions': '32,16,8',
|
42 |
+
'class_cond': False,
|
43 |
+
'diffusion_steps': 1000,
|
44 |
+
'rescale_timesteps': True,
|
45 |
+
'timestep_respacing': STEPS, # Modify this value to decrease the number of
|
46 |
+
# timesteps.
|
47 |
+
'image_size': 32,
|
48 |
+
'learn_sigma': False,
|
49 |
+
'noise_schedule': 'linear',
|
50 |
+
'num_channels': 320,
|
51 |
+
'num_heads': 8,
|
52 |
+
'num_res_blocks': 2,
|
53 |
+
'resblock_updown': False,
|
54 |
+
'use_fp16': False,
|
55 |
+
'use_scale_shift_norm': False,
|
56 |
+
'clip_embed_dim': 768,
|
57 |
+
'image_condition': True,
|
58 |
+
'super_res_condition': False,
|
59 |
+
}
|
60 |
+
|
61 |
+
if USE_DDPM:
|
62 |
+
model_params['timestep_respacing'] = '1000'
|
63 |
+
if USE_DDIM:
|
64 |
+
if STEPS:
|
65 |
+
model_params['timestep_respacing'] = 'ddim'+str(STEPS)
|
66 |
+
else:
|
67 |
+
model_params['timestep_respacing'] = 'ddim50'
|
68 |
+
elif STEPS:
|
69 |
+
model_params['timestep_respacing'] = str(STEPS)
|
70 |
+
|
71 |
+
model_config = model_and_diffusion_defaults()
|
72 |
+
model_config.update(model_params)
|
73 |
+
|
74 |
+
if USE_CPU:
|
75 |
+
model_config['use_fp16'] = False
|
76 |
+
|
77 |
+
|
78 |
+
model, diffusion = create_model_and_diffusion(**model_config)
|
79 |
+
model.load_state_dict(model_state_dict, strict=False)
|
80 |
+
|
81 |
+
model.requires_grad_(CLIP_GUIDANCE).eval().to(device)
|
82 |
+
|
83 |
+
if model_config['use_fp16']:
|
84 |
+
model.convert_to_fp16()
|
85 |
+
else:
|
86 |
+
model.convert_to_fp32()
|
87 |
+
|
88 |
+
def set_requires_grad(model, value):
|
89 |
+
for param in model.parameters():
|
90 |
+
param.requires_grad = value
|
91 |
+
|
92 |
+
|
93 |
+
lpips_model = lpips.LPIPS(net="vgg").to(device)
|
94 |
+
hf_kl_path = hf_hub_download("alvanlii/rdm_inpaint", "kl-f8.pt")
|
95 |
+
|
96 |
+
ldm = torch.load(hf_kl_path, map_location="cpu")
|
97 |
+
|
98 |
+
# torch.save(ldm, "./weights/hf_ldm")
|
99 |
+
ldm.to(device)
|
100 |
+
ldm.eval()
|
101 |
+
ldm.requires_grad_(CLIP_GUIDANCE)
|
102 |
+
set_requires_grad(ldm, CLIP_GUIDANCE)
|
103 |
+
|
104 |
+
bert = BERTEmbedder(1280, 32)
|
105 |
+
hf_bert_path = hf_hub_download("alvanlii/rdm_inpaint", 'bert.pt')
|
106 |
+
# bert = BERTEmbedder.from_pretrained("alvanlii/rdm_bert")
|
107 |
+
sd = torch.load(hf_bert_path, map_location="cpu")
|
108 |
+
bert.load_state_dict(sd)
|
109 |
+
# bert.save_pretrained("./weights/hf_bert")
|
110 |
+
|
111 |
+
bert.to(device)
|
112 |
+
bert.half().eval()
|
113 |
+
set_requires_grad(bert, False)
|
114 |
+
|
115 |
+
|
116 |
+
clip_model, clip_preprocess = clip.load('ViT-L/14', device=device, jit=False)
|
117 |
+
clip_model.eval().requires_grad_(False)
|
118 |
+
|
119 |
+
return segmodel, model, diffusion, ldm, bert, clip_model, model_params
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
make_models()
|