Spaces:
Runtime error
Runtime error
# MIT License | |
# | |
# Copyright (c) 2022 Cheng Lu | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# | |
# This file is adapted from the dpm-solver project | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha | |
# dpm-solver: https://github.com/LuChengTHU/dpm-solver | |
# -------------------------------------------------------- | |
import math | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac): | |
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) | |
warmup_time = int(num_diffusion_timesteps * warmup_frac) | |
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) | |
return betas | |
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): | |
""" | |
This is the deprecated API for creating beta schedules. | |
See get_named_beta_schedule() for the new library of schedules. | |
""" | |
if beta_schedule == "quad": | |
betas = ( | |
np.linspace( | |
beta_start**0.5, | |
beta_end**0.5, | |
num_diffusion_timesteps, | |
dtype=np.float64, | |
) | |
** 2 | |
) | |
elif beta_schedule == "linear": | |
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) | |
elif beta_schedule == "warmup10": | |
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1) | |
elif beta_schedule == "warmup50": | |
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5) | |
elif beta_schedule == "const": | |
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) | |
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1 | |
betas = 1.0 / np.linspace(num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64) | |
else: | |
raise NotImplementedError(beta_schedule) | |
assert betas.shape == (num_diffusion_timesteps,) | |
return betas | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = 1000 / num_diffusion_timesteps | |
return get_beta_schedule( | |
"linear", | |
beta_start=scale * 0.0001, | |
beta_end=scale * 0.02, | |
num_diffusion_timesteps=num_diffusion_timesteps, | |
) | |
elif schedule_name == "squaredcos_cap_v2": | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
class NoiseScheduleVP: | |
def __init__( | |
self, | |
schedule="discrete", | |
betas=None, | |
alphas_cumprod=None, | |
continuous_beta_0=0.1, | |
continuous_beta_1=20.0, | |
dtype=torch.float32, | |
): | |
"""Create a wrapper class for the forward SDE (VP type). | |
*** | |
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. | |
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. | |
*** | |
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). | |
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). | |
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: | |
log_alpha_t = self.marginal_log_mean_coeff(t) | |
sigma_t = self.marginal_std(t) | |
lambda_t = self.marginal_lambda(t) | |
Moreover, as lambda(t) is an invertible function, we also support its inverse function: | |
t = self.inverse_lambda(lambda_t) | |
=============================================================== | |
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). | |
1. For discrete-time DPMs: | |
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: | |
t_i = (i + 1) / N | |
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. | |
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. | |
Args: | |
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) | |
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) | |
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. | |
**Important**: Please pay special attention for the args for `alphas_cumprod`: | |
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that | |
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). | |
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have | |
alpha_{t_n} = \sqrt{\hat{alpha_n}}, | |
and | |
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). | |
2. For continuous-time DPMs: | |
We support the linear VPSDE for the continuous time setting. The hyperparameters for the noise | |
schedule are the default settings in Yang Song's ScoreSDE: | |
Args: | |
beta_min: A `float` number. The smallest beta for the linear schedule. | |
beta_max: A `float` number. The largest beta for the linear schedule. | |
T: A `float` number. The ending time of the forward process. | |
=============================================================== | |
Args: | |
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, | |
'linear' for continuous-time DPMs. | |
Returns: | |
A wrapper object of the forward SDE (VP type). | |
=============================================================== | |
Example: | |
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): | |
>>> ns = NoiseScheduleVP('discrete', betas=betas) | |
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): | |
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) | |
# For continuous-time DPMs (VPSDE), linear schedule: | |
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) | |
""" | |
if schedule not in ["discrete", "linear"]: | |
raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear'") | |
self.schedule = schedule | |
if schedule == "discrete": | |
if betas is not None: | |
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) | |
else: | |
assert alphas_cumprod is not None | |
log_alphas = 0.5 * torch.log(alphas_cumprod) | |
self.T = 1.0 | |
self.log_alpha_array = ( | |
self.numerical_clip_alpha(log_alphas) | |
.reshape( | |
( | |
1, | |
-1, | |
) | |
) | |
.to(dtype=dtype) | |
) | |
self.total_N = self.log_alpha_array.shape[1] | |
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype) | |
else: | |
self.T = 1.0 | |
self.total_N = 1000 | |
self.beta_0 = continuous_beta_0 | |
self.beta_1 = continuous_beta_1 | |
def numerical_clip_alpha(self, log_alphas, clipped_lambda=-5.1): | |
""" | |
For some beta schedules such as cosine schedule, the log-SNR has numerical isssues. | |
We clip the log-SNR near t=T within -5.1 to ensure the stability. | |
Such a trick is very useful for diffusion models with the cosine schedule, such as i-DDPM, guided-diffusion and GLIDE. | |
""" | |
log_sigmas = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_alphas)) | |
lambs = log_alphas - log_sigmas | |
idx = torch.searchsorted(torch.flip(lambs, [0]), clipped_lambda) | |
if idx > 0: | |
log_alphas = log_alphas[:-idx] | |
return log_alphas | |
def marginal_log_mean_coeff(self, t): | |
""" | |
Compute log(alpha_t) of a given continuous-time label t in [0, T]. | |
""" | |
if self.schedule == "discrete": | |
return interpolate_fn( | |
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) | |
).reshape((-1)) | |
elif self.schedule == "linear": | |
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 | |
def marginal_alpha(self, t): | |
""" | |
Compute alpha_t of a given continuous-time label t in [0, T]. | |
""" | |
return torch.exp(self.marginal_log_mean_coeff(t)) | |
def marginal_std(self, t): | |
""" | |
Compute sigma_t of a given continuous-time label t in [0, T]. | |
""" | |
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) | |
def marginal_lambda(self, t): | |
""" | |
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. | |
""" | |
log_mean_coeff = self.marginal_log_mean_coeff(t) | |
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) | |
return log_mean_coeff - log_std | |
def inverse_lambda(self, lamb): | |
""" | |
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. | |
""" | |
if self.schedule == "linear": | |
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) | |
Delta = self.beta_0**2 + tmp | |
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) | |
elif self.schedule == "discrete": | |
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) | |
t = interpolate_fn( | |
log_alpha.reshape((-1, 1)), | |
torch.flip(self.log_alpha_array.to(lamb.device), [1]), | |
torch.flip(self.t_array.to(lamb.device), [1]), | |
) | |
return t.reshape((-1,)) | |
def model_wrapper( | |
model, | |
noise_schedule, | |
model_type="noise", | |
model_kwargs={}, | |
guidance_type="uncond", | |
condition=None, | |
unconditional_condition=None, | |
guidance_scale=1.0, | |
classifier_fn=None, | |
classifier_kwargs={}, | |
): | |
"""Create a wrapper function for the noise prediction model. | |
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to | |
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. | |
We support four types of the diffusion model by setting `model_type`: | |
1. "noise": noise prediction model. (Trained by predicting noise). | |
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). | |
3. "v": velocity prediction model. (Trained by predicting the velocity). | |
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. | |
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." | |
arXiv preprint arXiv:2202.00512 (2022). | |
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." | |
arXiv preprint arXiv:2210.02303 (2022). | |
4. "score": marginal score function. (Trained by denoising score matching). | |
Note that the score function and the noise prediction model follows a simple relationship: | |
``` | |
noise(x_t, t) = -sigma_t * score(x_t, t) | |
``` | |
We support three types of guided sampling by DPMs by setting `guidance_type`: | |
1. "uncond": unconditional sampling by DPMs. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, **model_kwargs) -> noise | x_start | v | score | |
`` | |
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, **model_kwargs) -> noise | x_start | v | score | |
`` | |
The input `classifier_fn` has the following format: | |
`` | |
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) | |
`` | |
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," | |
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. | |
3. "classifier-free": classifier-free guidance sampling by conditional DPMs. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score | |
`` | |
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. | |
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." | |
arXiv preprint arXiv:2207.12598 (2022). | |
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) | |
or continuous-time labels (i.e. epsilon to T). | |
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: | |
`` | |
def model_fn(x, t_continuous) -> noise: | |
t_input = get_model_input_time(t_continuous) | |
return noise_pred(model, x, t_input, **model_kwargs) | |
`` | |
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. | |
=============================================================== | |
Args: | |
model: A diffusion model with the corresponding format described above. | |
noise_schedule: A noise schedule object, such as NoiseScheduleVP. | |
model_type: A `str`. The parameterization type of the diffusion model. | |
"noise" or "x_start" or "v" or "score". | |
model_kwargs: A `dict`. A dict for the other inputs of the model function. | |
guidance_type: A `str`. The type of the guidance for sampling. | |
"uncond" or "classifier" or "classifier-free". | |
condition: A pytorch tensor. The condition for the guided sampling. | |
Only used for "classifier" or "classifier-free" guidance type. | |
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. | |
Only used for "classifier-free" guidance type. | |
guidance_scale: A `float`. The scale for the guided sampling. | |
classifier_fn: A classifier function. Only used for the classifier guidance. | |
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. | |
Returns: | |
A noise prediction model that accepts the noised data and the continuous time as the inputs. | |
""" | |
def get_model_input_time(t_continuous): | |
""" | |
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. | |
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. | |
For continuous-time DPMs, we just use `t_continuous`. | |
""" | |
if noise_schedule.schedule == "discrete": | |
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 | |
else: | |
return t_continuous | |
def noise_pred_fn(x, t_continuous, cond=None): | |
t_input = get_model_input_time(t_continuous) | |
if cond is None: | |
output = model(x, t_input, **model_kwargs) | |
else: | |
output = model(x, t_input, cond, **model_kwargs) | |
if model_type == "noise": | |
return output | |
elif model_type == "x_start": | |
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) | |
return (x - expand_dims(alpha_t, x.dim()) * output) / expand_dims(sigma_t, x.dim()) | |
elif model_type == "v": | |
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) | |
return expand_dims(alpha_t, x.dim()) * output + expand_dims(sigma_t, x.dim()) * x | |
elif model_type == "score": | |
sigma_t = noise_schedule.marginal_std(t_continuous) | |
return -expand_dims(sigma_t, x.dim()) * output | |
def cond_grad_fn(x, t_input): | |
""" | |
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). | |
""" | |
with torch.enable_grad(): | |
x_in = x.detach().requires_grad_(True) | |
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) | |
return torch.autograd.grad(log_prob.sum(), x_in)[0] | |
def model_fn(x, t_continuous): | |
""" | |
The noise predicition model function that is used for DPM-Solver. | |
""" | |
if guidance_type == "uncond": | |
return noise_pred_fn(x, t_continuous) | |
elif guidance_type == "classifier": | |
assert classifier_fn is not None | |
t_input = get_model_input_time(t_continuous) | |
cond_grad = cond_grad_fn(x, t_input) | |
sigma_t = noise_schedule.marginal_std(t_continuous) | |
noise = noise_pred_fn(x, t_continuous) | |
return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad | |
elif guidance_type == "classifier-free": | |
if guidance_scale == 1.0 or unconditional_condition is None: | |
return noise_pred_fn(x, t_continuous, cond=condition) | |
x_in = torch.cat([x] * 2) | |
t_in = torch.cat([t_continuous] * 2) | |
c_in = torch.cat([unconditional_condition, condition]) | |
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) | |
return noise_uncond + guidance_scale * (noise - noise_uncond) | |
assert model_type in ["noise", "x_start", "v", "score"] | |
assert guidance_type in ["uncond", "classifier", "classifier-free"] | |
return model_fn | |
class DPM_Solver: | |
def __init__( | |
self, | |
model_fn, | |
noise_schedule, | |
algorithm_type="dpmsolver++", | |
correcting_x0_fn=None, | |
correcting_xt_fn=None, | |
thresholding_max_val=1.0, | |
dynamic_thresholding_ratio=0.995, | |
): | |
"""Construct a DPM-Solver. | |
We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`). | |
We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you | |
can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the | |
dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space | |
DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space | |
DPMs (such as stable-diffusion). | |
To support advanced algorithms in image-to-image applications, we also support corrector functions for | |
both x0 and xt. | |
Args: | |
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): | |
`` | |
def model_fn(x, t_continuous): | |
return noise | |
`` | |
The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`. | |
noise_schedule: A noise schedule object, such as NoiseScheduleVP. | |
algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++". | |
correcting_x0_fn: A `str` or a function with the following format: | |
``` | |
def correcting_x0_fn(x0, t): | |
x0_new = ... | |
return x0_new | |
``` | |
This function is to correct the outputs of the data prediction model at each sampling step. e.g., | |
``` | |
x0_pred = data_pred_model(xt, t) | |
if correcting_x0_fn is not None: | |
x0_pred = correcting_x0_fn(x0_pred, t) | |
xt_1 = update(x0_pred, xt, t) | |
``` | |
If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1]. | |
correcting_xt_fn: A function with the following format: | |
``` | |
def correcting_xt_fn(xt, t, step): | |
x_new = ... | |
return x_new | |
``` | |
This function is to correct the intermediate samples xt at each sampling step. e.g., | |
``` | |
xt = ... | |
xt = correcting_xt_fn(xt, t, step) | |
``` | |
thresholding_max_val: A `float`. The max value for thresholding. | |
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`. | |
dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details). | |
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`. | |
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, | |
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models | |
with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. | |
""" | |
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0]))) | |
self.noise_schedule = noise_schedule | |
assert algorithm_type in ["dpmsolver", "dpmsolver++"] | |
self.algorithm_type = algorithm_type | |
if correcting_x0_fn == "dynamic_thresholding": | |
self.correcting_x0_fn = self.dynamic_thresholding_fn | |
else: | |
self.correcting_x0_fn = correcting_x0_fn | |
self.correcting_xt_fn = correcting_xt_fn | |
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio | |
self.thresholding_max_val = thresholding_max_val | |
def dynamic_thresholding_fn(self, x0, t): | |
""" | |
The dynamic thresholding method. | |
""" | |
dims = x0.dim() | |
p = self.dynamic_thresholding_ratio | |
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) | |
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) | |
x0 = torch.clamp(x0, -s, s) / s | |
return x0 | |
def noise_prediction_fn(self, x, t): | |
""" | |
Return the noise prediction model. | |
""" | |
return self.model(x, t) | |
def data_prediction_fn(self, x, t): | |
""" | |
Return the data prediction model (with corrector). | |
""" | |
noise = self.noise_prediction_fn(x, t) | |
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) | |
x0 = (x - sigma_t * noise) / alpha_t | |
if self.correcting_x0_fn is not None: | |
x0 = self.correcting_x0_fn(x0, t) | |
return x0 | |
def model_fn(self, x, t): | |
""" | |
Convert the model to the noise prediction model or the data prediction model. | |
""" | |
if self.algorithm_type == "dpmsolver++": | |
return self.data_prediction_fn(x, t) | |
else: | |
return self.noise_prediction_fn(x, t) | |
def get_time_steps(self, skip_type, t_T, t_0, N, device): | |
"""Compute the intermediate time steps for sampling. | |
Args: | |
skip_type: A `str`. The type for the spacing of the time steps. We support three types: | |
- 'logSNR': uniform logSNR for the time steps. | |
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) | |
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) | |
t_T: A `float`. The starting time of the sampling (default is T). | |
t_0: A `float`. The ending time of the sampling (default is epsilon). | |
N: A `int`. The total number of the spacing of the time steps. | |
device: A torch device. | |
Returns: | |
A pytorch tensor of the time steps, with the shape (N + 1,). | |
""" | |
if skip_type == "logSNR": | |
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) | |
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) | |
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) | |
return self.noise_schedule.inverse_lambda(logSNR_steps) | |
elif skip_type == "time_uniform": | |
return torch.linspace(t_T, t_0, N + 1).to(device) | |
elif skip_type == "time_quadratic": | |
t_order = 2 | |
return torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) | |
else: | |
raise ValueError( | |
f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'" | |
) | |
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): | |
""" | |
Get the order of each step for sampling by the singlestep DPM-Solver. | |
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". | |
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: | |
- If order == 1: | |
We take `steps` of DPM-Solver-1 (i.e. DDIM). | |
- If order == 2: | |
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. | |
- If steps % 2 == 0, we use K steps of DPM-Solver-2. | |
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. | |
- If order == 3: | |
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. | |
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. | |
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. | |
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. | |
============================================ | |
Args: | |
order: A `int`. The max order for the solver (2 or 3). | |
steps: A `int`. The total number of function evaluations (NFE). | |
skip_type: A `str`. The type for the spacing of the time steps. We support three types: | |
- 'logSNR': uniform logSNR for the time steps. | |
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) | |
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) | |
t_T: A `float`. The starting time of the sampling (default is T). | |
t_0: A `float`. The ending time of the sampling (default is epsilon). | |
device: A torch device. | |
Returns: | |
orders: A list of the solver order of each step. | |
""" | |
if order == 3: | |
K = steps // 3 + 1 | |
if steps % 3 == 0: | |
orders = [ | |
3, | |
] * ( | |
K - 2 | |
) + [2, 1] | |
elif steps % 3 == 1: | |
orders = [ | |
3, | |
] * ( | |
K - 1 | |
) + [1] | |
else: | |
orders = [ | |
3, | |
] * ( | |
K - 1 | |
) + [2] | |
elif order == 2: | |
if steps % 2 == 0: | |
K = steps // 2 | |
orders = [ | |
2, | |
] * K | |
else: | |
K = steps // 2 + 1 | |
orders = [ | |
2, | |
] * ( | |
K - 1 | |
) + [1] | |
elif order == 1: | |
K = 1 | |
orders = [ | |
1, | |
] * steps | |
else: | |
raise ValueError("'order' must be '1' or '2' or '3'.") | |
if skip_type == "logSNR": | |
# To reproduce the results in DPM-Solver paper | |
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) | |
else: | |
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[ | |
torch.cumsum( | |
torch.tensor( | |
[ | |
0, | |
] | |
+ orders | |
), | |
0, | |
).to(device) | |
] | |
return timesteps_outer, orders | |
def denoise_to_zero_fn(self, x, s): | |
""" | |
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. | |
""" | |
return self.data_prediction_fn(x, s) | |
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): | |
""" | |
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
s: A pytorch tensor. The starting time, with the shape (1,). | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
model_s: A pytorch tensor. The model function evaluated at time `s`. | |
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. | |
return_intermediate: A `bool`. If true, also return the model value at time `s`. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
ns = self.noise_schedule | |
x.dim() | |
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) | |
h = lambda_t - lambda_s | |
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) | |
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) | |
alpha_t = torch.exp(log_alpha_t) | |
if self.algorithm_type == "dpmsolver++": | |
phi_1 = torch.expm1(-h) | |
if model_s is None: | |
model_s = self.model_fn(x, s) | |
x_t = sigma_t / sigma_s * x - alpha_t * phi_1 * model_s | |
else: | |
phi_1 = torch.expm1(h) | |
if model_s is None: | |
model_s = self.model_fn(x, s) | |
x_t = torch.exp(log_alpha_t - log_alpha_s) * x - (sigma_t * phi_1) * model_s | |
return (x_t, {"model_s": model_s}) if return_intermediate else x_t | |
def singlestep_dpm_solver_second_update( | |
self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type="dpmsolver" | |
): | |
""" | |
Singlestep solver DPM-Solver-2 from time `s` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
s: A pytorch tensor. The starting time, with the shape (1,). | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
r1: A `float`. The hyperparameter of the second-order solver. | |
model_s: A pytorch tensor. The model function evaluated at time `s`. | |
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. | |
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time). | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
if solver_type not in ["dpmsolver", "taylor"]: | |
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}") | |
if r1 is None: | |
r1 = 0.5 | |
ns = self.noise_schedule | |
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) | |
h = lambda_t - lambda_s | |
lambda_s1 = lambda_s + r1 * h | |
s1 = ns.inverse_lambda(lambda_s1) | |
log_alpha_s, log_alpha_s1, log_alpha_t = ( | |
ns.marginal_log_mean_coeff(s), | |
ns.marginal_log_mean_coeff(s1), | |
ns.marginal_log_mean_coeff(t), | |
) | |
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t) | |
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) | |
if self.algorithm_type == "dpmsolver++": | |
phi_11 = torch.expm1(-r1 * h) | |
phi_1 = torch.expm1(-h) | |
if model_s is None: | |
model_s = self.model_fn(x, s) | |
x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s | |
model_s1 = self.model_fn(x_s1, s1) | |
if solver_type == "dpmsolver": | |
x_t = ( | |
(sigma_t / sigma_s) * x | |
- (alpha_t * phi_1) * model_s | |
- (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s) | |
) | |
elif solver_type == "taylor": | |
x_t = ( | |
(sigma_t / sigma_s) * x | |
- (alpha_t * phi_1) * model_s | |
+ (1.0 / r1) * (alpha_t * (phi_1 / h + 1.0)) * (model_s1 - model_s) | |
) | |
else: | |
phi_11 = torch.expm1(r1 * h) | |
phi_1 = torch.expm1(h) | |
if model_s is None: | |
model_s = self.model_fn(x, s) | |
x_s1 = torch.exp(log_alpha_s1 - log_alpha_s) * x - (sigma_s1 * phi_11) * model_s | |
model_s1 = self.model_fn(x_s1, s1) | |
if solver_type == "dpmsolver": | |
x_t = ( | |
torch.exp(log_alpha_t - log_alpha_s) * x | |
- (sigma_t * phi_1) * model_s | |
- (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s) | |
) | |
elif solver_type == "taylor": | |
x_t = ( | |
torch.exp(log_alpha_t - log_alpha_s) * x | |
- (sigma_t * phi_1) * model_s | |
- (1.0 / r1) * (sigma_t * (phi_1 / h - 1.0)) * (model_s1 - model_s) | |
) | |
if return_intermediate: | |
return x_t, {"model_s": model_s, "model_s1": model_s1} | |
else: | |
return x_t | |
def singlestep_dpm_solver_third_update( | |
self, | |
x, | |
s, | |
t, | |
r1=1.0 / 3.0, | |
r2=2.0 / 3.0, | |
model_s=None, | |
model_s1=None, | |
return_intermediate=False, | |
solver_type="dpmsolver", | |
): | |
""" | |
Singlestep solver DPM-Solver-3 from time `s` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
s: A pytorch tensor. The starting time, with the shape (1,). | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
r1: A `float`. The hyperparameter of the third-order solver. | |
r2: A `float`. The hyperparameter of the third-order solver. | |
model_s: A pytorch tensor. The model function evaluated at time `s`. | |
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. | |
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`). | |
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it. | |
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
if solver_type not in ["dpmsolver", "taylor"]: | |
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}") | |
if r1 is None: | |
r1 = 1.0 / 3.0 | |
if r2 is None: | |
r2 = 2.0 / 3.0 | |
ns = self.noise_schedule | |
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) | |
h = lambda_t - lambda_s | |
lambda_s1 = lambda_s + r1 * h | |
lambda_s2 = lambda_s + r2 * h | |
s1 = ns.inverse_lambda(lambda_s1) | |
s2 = ns.inverse_lambda(lambda_s2) | |
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ( | |
ns.marginal_log_mean_coeff(s), | |
ns.marginal_log_mean_coeff(s1), | |
ns.marginal_log_mean_coeff(s2), | |
ns.marginal_log_mean_coeff(t), | |
) | |
sigma_s, sigma_s1, sigma_s2, sigma_t = ( | |
ns.marginal_std(s), | |
ns.marginal_std(s1), | |
ns.marginal_std(s2), | |
ns.marginal_std(t), | |
) | |
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t) | |
if self.algorithm_type == "dpmsolver++": | |
phi_11 = torch.expm1(-r1 * h) | |
phi_12 = torch.expm1(-r2 * h) | |
phi_1 = torch.expm1(-h) | |
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.0 | |
phi_2 = phi_1 / h + 1.0 | |
phi_3 = phi_2 / h - 0.5 | |
if model_s is None: | |
model_s = self.model_fn(x, s) | |
if model_s1 is None: | |
x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s | |
model_s1 = self.model_fn(x_s1, s1) | |
x_s2 = ( | |
(sigma_s2 / sigma_s) * x | |
- (alpha_s2 * phi_12) * model_s | |
+ r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s) | |
) | |
model_s2 = self.model_fn(x_s2, s2) | |
if solver_type == "dpmsolver": | |
x_t = ( | |
(sigma_t / sigma_s) * x | |
- (alpha_t * phi_1) * model_s | |
+ (1.0 / r2) * (alpha_t * phi_2) * (model_s2 - model_s) | |
) | |
elif solver_type == "taylor": | |
D1_0 = (1.0 / r1) * (model_s1 - model_s) | |
D1_1 = (1.0 / r2) * (model_s2 - model_s) | |
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) | |
D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1) | |
x_t = ( | |
(sigma_t / sigma_s) * x | |
- (alpha_t * phi_1) * model_s | |
+ (alpha_t * phi_2) * D1 | |
- (alpha_t * phi_3) * D2 | |
) | |
else: | |
phi_11 = torch.expm1(r1 * h) | |
phi_12 = torch.expm1(r2 * h) | |
phi_1 = torch.expm1(h) | |
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.0 | |
phi_2 = phi_1 / h - 1.0 | |
phi_3 = phi_2 / h - 0.5 | |
if model_s is None: | |
model_s = self.model_fn(x, s) | |
if model_s1 is None: | |
x_s1 = (torch.exp(log_alpha_s1 - log_alpha_s)) * x - (sigma_s1 * phi_11) * model_s | |
model_s1 = self.model_fn(x_s1, s1) | |
x_s2 = ( | |
(torch.exp(log_alpha_s2 - log_alpha_s)) * x | |
- (sigma_s2 * phi_12) * model_s | |
- r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s) | |
) | |
model_s2 = self.model_fn(x_s2, s2) | |
if solver_type == "dpmsolver": | |
x_t = ( | |
(torch.exp(log_alpha_t - log_alpha_s)) * x | |
- (sigma_t * phi_1) * model_s | |
- (1.0 / r2) * (sigma_t * phi_2) * (model_s2 - model_s) | |
) | |
elif solver_type == "taylor": | |
D1_0 = (1.0 / r1) * (model_s1 - model_s) | |
D1_1 = (1.0 / r2) * (model_s2 - model_s) | |
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) | |
D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1) | |
x_t = ( | |
(torch.exp(log_alpha_t - log_alpha_s)) * x | |
- (sigma_t * phi_1) * model_s | |
- (sigma_t * phi_2) * D1 | |
- (sigma_t * phi_3) * D2 | |
) | |
if return_intermediate: | |
return x_t, {"model_s": model_s, "model_s1": model_s1, "model_s2": model_s2} | |
else: | |
return x_t | |
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"): | |
""" | |
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
model_prev_list: A list of pytorch tensor. The previous computed model values. | |
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,) | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
if solver_type not in ["dpmsolver", "taylor"]: | |
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}") | |
ns = self.noise_schedule | |
model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1] | |
t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1] | |
lambda_prev_1, lambda_prev_0, lambda_t = ( | |
ns.marginal_lambda(t_prev_1), | |
ns.marginal_lambda(t_prev_0), | |
ns.marginal_lambda(t), | |
) | |
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) | |
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) | |
alpha_t = torch.exp(log_alpha_t) | |
h_0 = lambda_prev_0 - lambda_prev_1 | |
h = lambda_t - lambda_prev_0 | |
r0 = h_0 / h | |
D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1) | |
if self.algorithm_type == "dpmsolver++": | |
phi_1 = torch.expm1(-h) | |
if solver_type == "dpmsolver": | |
x_t = (sigma_t / sigma_prev_0) * x - (alpha_t * phi_1) * model_prev_0 - 0.5 * (alpha_t * phi_1) * D1_0 | |
elif solver_type == "taylor": | |
x_t = ( | |
(sigma_t / sigma_prev_0) * x | |
- (alpha_t * phi_1) * model_prev_0 | |
+ (alpha_t * (phi_1 / h + 1.0)) * D1_0 | |
) | |
else: | |
phi_1 = torch.expm1(h) | |
if solver_type == "dpmsolver": | |
x_t = ( | |
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x | |
- (sigma_t * phi_1) * model_prev_0 | |
- 0.5 * (sigma_t * phi_1) * D1_0 | |
) | |
elif solver_type == "taylor": | |
x_t = ( | |
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x | |
- (sigma_t * phi_1) * model_prev_0 | |
- (sigma_t * (phi_1 / h - 1.0)) * D1_0 | |
) | |
return x_t | |
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"): | |
""" | |
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
model_prev_list: A list of pytorch tensor. The previous computed model values. | |
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,) | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
ns = self.noise_schedule | |
model_prev_2, model_prev_1, model_prev_0 = model_prev_list | |
t_prev_2, t_prev_1, t_prev_0 = t_prev_list | |
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ( | |
ns.marginal_lambda(t_prev_2), | |
ns.marginal_lambda(t_prev_1), | |
ns.marginal_lambda(t_prev_0), | |
ns.marginal_lambda(t), | |
) | |
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) | |
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) | |
alpha_t = torch.exp(log_alpha_t) | |
h_1 = lambda_prev_1 - lambda_prev_2 | |
h_0 = lambda_prev_0 - lambda_prev_1 | |
h = lambda_t - lambda_prev_0 | |
r0, r1 = h_0 / h, h_1 / h | |
D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1) | |
D1_1 = (1.0 / r1) * (model_prev_1 - model_prev_2) | |
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | |
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | |
if self.algorithm_type == "dpmsolver++": | |
phi_1 = torch.expm1(-h) | |
phi_2 = phi_1 / h + 1.0 | |
phi_3 = phi_2 / h - 0.5 | |
return ( | |
(sigma_t / sigma_prev_0) * x | |
- (alpha_t * phi_1) * model_prev_0 | |
+ (alpha_t * phi_2) * D1 | |
- (alpha_t * phi_3) * D2 | |
) | |
else: | |
phi_1 = torch.expm1(h) | |
phi_2 = phi_1 / h - 1.0 | |
phi_3 = phi_2 / h - 0.5 | |
return ( | |
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x | |
- (sigma_t * phi_1) * model_prev_0 | |
- (sigma_t * phi_2) * D1 | |
- (sigma_t * phi_3) * D2 | |
) | |
def singlestep_dpm_solver_update( | |
self, x, s, t, order, return_intermediate=False, solver_type="dpmsolver", r1=None, r2=None | |
): | |
""" | |
Singlestep DPM-Solver with the order `order` from time `s` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
s: A pytorch tensor. The starting time, with the shape (1,). | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. | |
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
r1: A `float`. The hyperparameter of the second-order or third-order solver. | |
r2: A `float`. The hyperparameter of the third-order solver. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
if order == 1: | |
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate) | |
elif order == 2: | |
return self.singlestep_dpm_solver_second_update( | |
x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1 | |
) | |
elif order == 3: | |
return self.singlestep_dpm_solver_third_update( | |
x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2 | |
) | |
else: | |
raise ValueError(f"Solver order must be 1 or 2 or 3, got {order}") | |
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type="dpmsolver"): | |
""" | |
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. | |
Args: | |
x: A pytorch tensor. The initial value at time `s`. | |
model_prev_list: A list of pytorch tensor. The previous computed model values. | |
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,) | |
t: A pytorch tensor. The ending time, with the shape (1,). | |
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
Returns: | |
x_t: A pytorch tensor. The approximated solution at time `t`. | |
""" | |
if order == 1: | |
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) | |
elif order == 2: | |
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) | |
elif order == 3: | |
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) | |
else: | |
raise ValueError(f"Solver order must be 1 or 2 or 3, got {order}") | |
def dpm_solver_adaptive( | |
self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type="dpmsolver" | |
): | |
""" | |
The adaptive step size solver based on singlestep DPM-Solver. | |
Args: | |
x: A pytorch tensor. The initial value at time `t_T`. | |
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. | |
t_T: A `float`. The starting time of the sampling (default is T). | |
t_0: A `float`. The ending time of the sampling (default is epsilon). | |
h_init: A `float`. The initial step size (for logSNR). | |
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. | |
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. | |
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. | |
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the | |
current time and `t_0` is less than `t_err`. The default setting is 1e-5. | |
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers. | |
The type slightly impacts the performance. We recommend to use 'dpmsolver' type. | |
Returns: | |
x_0: A pytorch tensor. The approximated solution at time `t_0`. | |
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. | |
""" | |
ns = self.noise_schedule | |
s = t_T * torch.ones((1,)).to(x) | |
lambda_s = ns.marginal_lambda(s) | |
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) | |
h = h_init * torch.ones_like(s).to(x) | |
x_prev = x | |
nfe = 0 | |
if order == 2: | |
r1 = 0.5 | |
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True) | |
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update( | |
x, s, t, r1=r1, solver_type=solver_type, **kwargs | |
) | |
elif order == 3: | |
r1, r2 = 1.0 / 3.0, 2.0 / 3.0 | |
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update( | |
x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type | |
) | |
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update( | |
x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs | |
) | |
else: | |
raise ValueError(f"For adaptive step size solver, order must be 2 or 3, got {order}") | |
while torch.abs((s - t_0)).mean() > t_err: | |
t = ns.inverse_lambda(lambda_s + h) | |
x_lower, lower_noise_kwargs = lower_update(x, s, t) | |
x_higher = higher_update(x, s, t, **lower_noise_kwargs) | |
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) | |
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) | |
E = norm_fn((x_higher - x_lower) / delta).max() | |
if torch.all(E <= 1.0): | |
x = x_higher | |
s = t | |
x_prev = x_lower | |
lambda_s = ns.marginal_lambda(s) | |
h = torch.min(theta * h * torch.float_power(E, -1.0 / order).float(), lambda_0 - lambda_s) | |
nfe += order | |
print("adaptive solver nfe", nfe) | |
return x | |
def add_noise(self, x, t, noise=None): | |
""" | |
Compute the noised input xt = alpha_t * x + sigma_t * noise. | |
Args: | |
x: A `torch.Tensor` with shape `(batch_size, *shape)`. | |
t: A `torch.Tensor` with shape `(t_size,)`. | |
Returns: | |
xt with shape `(t_size, batch_size, *shape)`. | |
""" | |
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) | |
if noise is None: | |
noise = torch.randn((t.shape[0], *x.shape), device=x.device) | |
x = x.reshape((-1, *x.shape)) | |
xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise | |
return xt.squeeze(0) if t.shape[0] == 1 else xt | |
def inverse( | |
self, | |
x, | |
steps=20, | |
t_start=None, | |
t_end=None, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
lower_order_final=True, | |
denoise_to_zero=False, | |
solver_type="dpmsolver", | |
atol=0.0078, | |
rtol=0.05, | |
return_intermediate=False, | |
): | |
""" | |
Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver. | |
For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training. | |
""" | |
t_0 = 1.0 / self.noise_schedule.total_N if t_start is None else t_start | |
t_T = self.noise_schedule.T if t_end is None else t_end | |
assert ( | |
t_0 > 0 and t_T > 0 | |
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" | |
return self.sample( | |
x, | |
steps=steps, | |
t_start=t_0, | |
t_end=t_T, | |
order=order, | |
skip_type=skip_type, | |
method=method, | |
lower_order_final=lower_order_final, | |
denoise_to_zero=denoise_to_zero, | |
solver_type=solver_type, | |
atol=atol, | |
rtol=rtol, | |
return_intermediate=return_intermediate, | |
) | |
def sample( | |
self, | |
x, | |
steps=20, | |
t_start=None, | |
t_end=None, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
lower_order_final=True, | |
denoise_to_zero=False, | |
solver_type="dpmsolver", | |
atol=0.0078, | |
rtol=0.05, | |
return_intermediate=False, | |
): | |
""" | |
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`. | |
===================================================== | |
We support the following algorithms for both noise prediction model and data prediction model: | |
- 'singlestep': | |
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver. | |
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps). | |
The total number of function evaluations (NFE) == `steps`. | |
Given a fixed NFE == `steps`, the sampling procedure is: | |
- If `order` == 1: | |
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM). | |
- If `order` == 2: | |
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling. | |
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2. | |
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. | |
- If `order` == 3: | |
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. | |
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. | |
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1. | |
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2. | |
- 'multistep': | |
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`. | |
We initialize the first `order` values by lower order multistep solvers. | |
Given a fixed NFE == `steps`, the sampling procedure is: | |
Denote K = steps. | |
- If `order` == 1: | |
- We use K steps of DPM-Solver-1 (i.e. DDIM). | |
- If `order` == 2: | |
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2. | |
- If `order` == 3: | |
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3. | |
- 'singlestep_fixed': | |
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3). | |
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. | |
- 'adaptive': | |
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper). | |
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. | |
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs | |
(NFE) and the sample quality. | |
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2. | |
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3. | |
===================================================== | |
Some advices for choosing the algorithm: | |
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs: | |
Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`. | |
e.g., DPM-Solver: | |
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver") | |
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, | |
skip_type='time_uniform', method='singlestep') | |
e.g., DPM-Solver++: | |
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, | |
skip_type='time_uniform', method='singlestep') | |
- For **guided sampling with large guidance scale** by DPMs: | |
Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`. | |
e.g. | |
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2, | |
skip_type='time_uniform', method='multistep') | |
We support three types of `skip_type`: | |
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images** | |
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**. | |
- 'time_quadratic': quadratic time for the time steps. | |
===================================================== | |
Args: | |
x: A pytorch tensor. The initial value at time `t_start` | |
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution. | |
steps: A `int`. The total number of function evaluations (NFE). | |
t_start: A `float`. The starting time of the sampling. | |
If `T` is None, we use self.noise_schedule.T (default is 1.0). | |
t_end: A `float`. The ending time of the sampling. | |
If `t_end` is None, we use 1. / self.noise_schedule.total_N. | |
e.g. if total_N == 1000, we have `t_end` == 1e-3. | |
For discrete-time DPMs: | |
- We recommend `t_end` == 1. / self.noise_schedule.total_N. | |
For continuous-time DPMs: | |
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15. | |
order: A `int`. The order of DPM-Solver. | |
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'. | |
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'. | |
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step. | |
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1). | |
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and | |
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID | |
for diffusion models sampling by diffusion SDEs for low-resolutional images | |
(such as CIFAR-10). However, we observed that such trick does not matter for | |
high-resolutional images. As it needs an additional NFE, we do not recommend | |
it for high-resolutional images. | |
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps. | |
Only valid for `method=multistep` and `steps < 15`. We empirically find that | |
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps | |
(especially for steps <= 10). So we recommend to set it to be `True`. | |
solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`. | |
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. | |
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. | |
return_intermediate: A `bool`. Whether to save the xt at each step. | |
When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0. | |
Returns: | |
x_end: A pytorch tensor. The approximated solution at time `t_end`. | |
""" | |
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end | |
t_T = self.noise_schedule.T if t_start is None else t_start | |
assert ( | |
t_0 > 0 and t_T > 0 | |
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" | |
if return_intermediate: | |
assert method in [ | |
"multistep", | |
"singlestep", | |
"singlestep_fixed", | |
], "Cannot use adaptive solver when saving intermediate values" | |
if self.correcting_xt_fn is not None: | |
assert method in [ | |
"multistep", | |
"singlestep", | |
"singlestep_fixed", | |
], "Cannot use adaptive solver when correcting_xt_fn is not None" | |
device = x.device | |
intermediates = [] | |
with torch.no_grad(): | |
if method == "adaptive": | |
x = self.dpm_solver_adaptive( | |
x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type | |
) | |
elif method == "multistep": | |
assert steps >= order | |
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) | |
assert timesteps.shape[0] - 1 == steps | |
# Init the initial values. | |
step = 0 | |
t = timesteps[step] | |
t_prev_list = [t] | |
model_prev_list = [self.model_fn(x, t)] | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
# Init the first `order` values by lower order multistep DPM-Solver. | |
for step in range(1, order): | |
t = timesteps[step] | |
x = self.multistep_dpm_solver_update( | |
x, model_prev_list, t_prev_list, t, step, solver_type=solver_type | |
) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
t_prev_list.append(t) | |
model_prev_list.append(self.model_fn(x, t)) | |
# Compute the remaining values by `order`-th order multistep DPM-Solver. | |
for step in tqdm(range(order, steps + 1)): | |
t = timesteps[step] | |
# We only use lower order for steps < 10 | |
if lower_order_final and steps < 10: | |
step_order = min(order, steps + 1 - step) | |
else: | |
step_order = order | |
x = self.multistep_dpm_solver_update( | |
x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type | |
) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
for i in range(order - 1): | |
t_prev_list[i] = t_prev_list[i + 1] | |
model_prev_list[i] = model_prev_list[i + 1] | |
t_prev_list[-1] = t | |
# We do not need to evaluate the final model value. | |
if step < steps: | |
model_prev_list[-1] = self.model_fn(x, t) | |
elif method in ["singlestep", "singlestep_fixed"]: | |
if method == "singlestep": | |
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver( | |
steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device | |
) | |
elif method == "singlestep_fixed": | |
K = steps // order | |
orders = [ | |
order, | |
] * K | |
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device) | |
for step, order in enumerate(orders): | |
s, t = timesteps_outer[step], timesteps_outer[step + 1] | |
timesteps_inner = self.get_time_steps( | |
skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device | |
) | |
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner) | |
h = lambda_inner[-1] - lambda_inner[0] | |
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h | |
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h | |
x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step) | |
if return_intermediate: | |
intermediates.append(x) | |
else: | |
raise ValueError(f"Got wrong method {method}") | |
if denoise_to_zero: | |
t = torch.ones((1,)).to(device) * t_0 | |
x = self.denoise_to_zero_fn(x, t) | |
if self.correcting_xt_fn is not None: | |
x = self.correcting_xt_fn(x, t, step + 1) | |
if return_intermediate: | |
intermediates.append(x) | |
return (x, intermediates) if return_intermediate else x | |
############################################################# | |
# other utility functions | |
############################################################# | |
def interpolate_fn(x, xp, yp): | |
""" | |
A piecewise linear function y = f(x), using xp and yp as keypoints. | |
We implement f(x) in a differentiable way (i.e. applicable for autograd). | |
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) | |
Args: | |
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). | |
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. | |
yp: PyTorch tensor with shape [C, K]. | |
Returns: | |
The function values f(x), with shape [N, C]. | |
""" | |
N, K = x.shape[0], xp.shape[1] | |
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) | |
sorted_all_x, x_indices = torch.sort(all_x, dim=2) | |
x_idx = torch.argmin(x_indices, dim=2) | |
cand_start_idx = x_idx - 1 | |
start_idx = torch.where( | |
torch.eq(x_idx, 0), | |
torch.tensor(1, device=x.device), | |
torch.where( | |
torch.eq(x_idx, K), | |
torch.tensor(K - 2, device=x.device), | |
cand_start_idx, | |
), | |
) | |
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) | |
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) | |
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) | |
start_idx2 = torch.where( | |
torch.eq(x_idx, 0), | |
torch.tensor(0, device=x.device), | |
torch.where( | |
torch.eq(x_idx, K), | |
torch.tensor(K - 2, device=x.device), | |
cand_start_idx, | |
), | |
) | |
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) | |
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) | |
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) | |
return start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) | |
def expand_dims(v, dims): | |
""" | |
Expand the tensor `v` to the dim `dims`. | |
Args: | |
`v`: a PyTorch tensor with shape [N]. | |
`dim`: a `int`. | |
Returns: | |
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. | |
""" | |
return v[(...,) + (None,) * (dims - 1)] | |
def DPMS( | |
model, | |
condition, | |
uncondition, | |
cfg_scale, | |
model_type="noise", | |
noise_schedule="linear", | |
guidance_type="classifier-free", | |
model_kwargs=None, | |
diffusion_steps=1000, | |
): | |
if model_kwargs is None: | |
model_kwargs = {} | |
betas = torch.tensor(get_named_beta_schedule(noise_schedule, diffusion_steps)) | |
## 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule="discrete", betas=betas) | |
## 2. Convert your discrete-time `model` to the continuous-time | |
## noise prediction model. Here is an example for a diffusion model | |
## `model` with the noise prediction type ("noise") . | |
model_fn = model_wrapper( | |
model, | |
noise_schedule, | |
model_type=model_type, | |
model_kwargs=model_kwargs, | |
guidance_type=guidance_type, | |
condition=condition, | |
unconditional_condition=uncondition, | |
guidance_scale=cfg_scale, | |
) | |
## 3. Define dpm-solver and sample by multistep DPM-Solver. | |
return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |