kadirnar's picture
Upload 98 files
e7d5680 verified
|
raw
history blame
1.81 kB
# Dataset Download and Management
## Dataset Format
The training data should be provided in a CSV file with the following format:
```csv
/absolute/path/to/image1.jpg, caption1, num_of_frames
/absolute/path/to/image2.jpg, caption2, num_of_frames
```
## HD-VG-130M
This dataset comprises 130M text-video pairs. You can download the dataset and prepare it for training according to [the dataset repository's instructions](https://github.com/daooshee/HD-VG-130M). There is a README.md file in the Google Drive link that provides instructions on how to download and cut the videos. For this version, we directly use the dataset provided by the authors.
## Demo Dataset
You can use ImageNet and UCF101 for a quick demo. After downloading the datasets, you can use the following command to prepare the csv file for the dataset:
```bash
# ImageNet
python -m tools.datasets.convert_dataset imagenet IMAGENET_FOLDER --split train
# UCF101
python -m tools.datasets.convert_dataset ucf101 UCF101_FOLDER --split videos
```
## Manage datasets
We provide `csvutils.py` to manage the CSV files. You can use the following commands to process the CSV files:
```bash
# generate DATA_fmin_128_fmax_256.csv with frames between 128 and 256
python -m tools.datasets.csvutil DATA.csv --fmin 128 --fmax 256
# generate DATA_root.csv with absolute path
python -m tools.datasets.csvutil DATA.csv --root /absolute/path/to/dataset
# remove videos with no captions
python -m tools.datasets.csvutil DATA.csv --remove-empty-caption
# compute the number of frames for each video
python -m tools.datasets.csvutil DATA.csv --relength
# remove caption prefix
python -m tools.datasets.csvutil DATA.csv --remove-caption-prefix
```
To merge multiple CSV files, you can use the following command:
```bash
cat *csv > combined.csv
```