Spaces:
Running
Running
#!/usr/bin/env python3 | |
# | |
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# References: | |
# https://gradio.app/docs/#dropdown | |
import logging | |
import os | |
import shutil | |
import time | |
import uuid | |
from datetime import datetime | |
import gradio as gr | |
from examples import examples | |
from model import ( | |
embedding2models, | |
get_file, | |
get_speaker_diarization, | |
read_wave, | |
speaker_segmentation_models, | |
) | |
embedding_frameworks = list(embedding2models.keys()) | |
waves = [e[-1] for e in examples] | |
for name in waves: | |
filename = get_file( | |
"csukuangfj/speaker-embedding-models", | |
name, | |
) | |
shutil.copyfile(filename, name) | |
def MyPrint(s): | |
now = datetime.now() | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
print(f"{date_time}: {s}") | |
def convert_to_wav(in_filename: str) -> str: | |
"""Convert the input audio file to a wave file""" | |
out_filename = str(uuid.uuid4()) | |
out_filename = f"{in_filename}.wav" | |
MyPrint(f"Converting '{in_filename}' to '{out_filename}'") | |
_ = os.system( | |
f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 16000 -ac 1 '{out_filename}' -y" | |
) | |
return out_filename | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process_uploaded_file( | |
embedding_framework: str, | |
embedding_model: str, | |
speaker_segmentation_model: str, | |
input_num_speakers: str, | |
input_threshold: str, | |
in_filename: str, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
try: | |
input_num_speakers = int(input_num_speakers) | |
except ValueError: | |
return "", build_html_output( | |
"Please set a valid number of speakers", | |
"result_item_error", | |
) | |
if input_num_speakers <= 0: | |
try: | |
input_threshold = float(input_threshold) | |
if input_threshold < 0 or input_threshold > 10: | |
raise ValueError("") | |
except ValueError: | |
return "", build_html_output( | |
"Please set a valid threshold between (0, 10)", | |
"result_item_error", | |
) | |
else: | |
input_threshold = 0 | |
MyPrint(f"Processing uploaded file: {in_filename}") | |
try: | |
return process( | |
in_filename=in_filename, | |
embedding_framework=embedding_framework, | |
embedding_model=embedding_model, | |
speaker_segmentation_model=speaker_segmentation_model, | |
input_num_speakers=input_num_speakers, | |
input_threshold=input_threshold, | |
) | |
except Exception as e: | |
MyPrint(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process( | |
embedding_framework: str, | |
embedding_model: str, | |
speaker_segmentation_model: str, | |
input_num_speakers: str, | |
input_threshold: str, | |
in_filename: str, | |
): | |
MyPrint(f"embedding_framework: {embedding_framework}") | |
MyPrint(f"embedding_model: {embedding_model}") | |
MyPrint(f"speaker_segmentation_model: {speaker_segmentation_model}") | |
MyPrint(f"input_num_speakers: {input_num_speakers}") | |
MyPrint(f"input_threshold: {input_threshold}") | |
MyPrint(f"in_filename: {in_filename}") | |
filename = convert_to_wav(in_filename) | |
now = datetime.now() | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
MyPrint(f"Started at {date_time}") | |
start = time.time() | |
audio, sample_rate = read_wave(filename) | |
MyPrint(f"audio, {audio.shape}, {sample_rate}") | |
sd = get_speaker_diarization( | |
segmentation_model=speaker_segmentation_model, | |
embedding_model=embedding_model, | |
num_clusters=input_num_speakers, | |
threshold=input_threshold, | |
) | |
MyPrint(f"{audio.shape[0] / sd.sample_rate}, {sample_rate}") | |
segments = sd.process(audio).sort_by_start_time() | |
s = "" | |
for seg in segments: | |
s += f"{seg.start:.3f} -- {seg.end:.3f} speaker_{seg.speaker:02d}\n" | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
end = time.time() | |
duration = audio.shape[0] / sd.sample_rate | |
rtf = (end - start) / duration | |
MyPrint(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
info = f""" | |
Wave duration : {duration: .3f} s <br/> | |
Processing time: {end - start: .3f} s <br/> | |
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> | |
""" | |
if rtf > 1: | |
info += ( | |
"<br/>We are loading the model for the first run. " | |
"Please run again to measure the real RTF.<br/>" | |
) | |
MyPrint(info) | |
MyPrint(f"\nembedding_model: {embedding_model}\nSegments: {s}") | |
return s, build_html_output(info) | |
title = "# Speaker diarization with Next-gen Kaldi" | |
description = """ | |
This space shows how to do speaker diarization with Next-gen Kaldi. | |
It is running on CPU within a docker container provided by Hugging Face. | |
See more information by visiting | |
<https://k2-fsa.github.io/sherpa/onnx/speaker-diarization/index.html> | |
If you want to try it on Android, please download pre-built Android | |
APKs for speaker diarzation by visiting | |
<https://k2-fsa.github.io/sherpa/onnx/speaker-diarization/android.html> | |
--- | |
Note about the two arguments: | |
- number of speakers: If you know the actual number of speakers in the input file, | |
please provide it. Otherwise, please set it to 0 | |
- clustering threshold: Used only when number of speakers is 0. A larger | |
threshold results in fewer clusters, i.e., fewer speakers. | |
""" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
def update_embedding_model_dropdown(framework: str): | |
if framework in embedding2models: | |
choices = embedding2models[framework] | |
return gr.Dropdown( | |
choices=choices, | |
value=choices[0], | |
interactive=True, | |
) | |
raise ValueError(f"Unsupported framework: {framework}") | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
embedding_framework_choices = list(embedding2models.keys()) | |
embedding_framework_radio = gr.Radio( | |
label="Speaker embedding frameworks", | |
choices=embedding_framework_choices, | |
value=embedding_framework_choices[0], | |
) | |
embedding_model_dropdown = gr.Dropdown( | |
choices=embedding2models[embedding_framework_choices[0]], | |
label="Select a speaker embedding model", | |
value=embedding2models[embedding_framework_choices[0]][0], | |
) | |
embedding_framework_radio.change( | |
update_embedding_model_dropdown, | |
inputs=embedding_framework_radio, | |
outputs=embedding_model_dropdown, | |
) | |
speaker_segmentation_model_dropdown = gr.Dropdown( | |
choices=speaker_segmentation_models, | |
label="Select a speaker segmentation model", | |
value=speaker_segmentation_models[0], | |
) | |
input_num_speakers = gr.Textbox( | |
label="Number of speakers", | |
info="Number of speakers", | |
lines=1, | |
max_lines=1, | |
value="0", | |
placeholder="Specify number of speakers in the test file", | |
) | |
input_threshold = gr.Textbox( | |
label="Clustering threshold", | |
info="Threshold for clustering", | |
lines=1, | |
max_lines=1, | |
value="0.5", | |
placeholder="Clustering for threshold", | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
uploaded_file = gr.Audio( | |
sources=["upload"], # Choose between "microphone", "upload" | |
type="filepath", | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for speaker diarization") | |
uploaded_output = gr.Textbox(label="Result from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
embedding_framework_radio, | |
embedding_model_dropdown, | |
speaker_segmentation_model_dropdown, | |
input_num_speakers, | |
input_threshold, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_uploaded_file, | |
) | |
upload_button.click( | |
process_uploaded_file, | |
inputs=[ | |
embedding_framework_radio, | |
embedding_model_dropdown, | |
speaker_segmentation_model_dropdown, | |
input_num_speakers, | |
input_threshold, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
) | |
gr.Markdown(description) | |
if __name__ == "__main__": | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch() | |