Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 7 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
@@ -382,7 +383,7 @@ def generate_beams(start_sentence, scores, length_penalty, decoded_sequences):
|
|
| 382 |
|
| 383 |
return original_tree
|
| 384 |
|
| 385 |
-
|
| 386 |
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
| 387 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 388 |
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
|
|
| 383 |
|
| 384 |
return original_tree
|
| 385 |
|
| 386 |
+
@spaces.GPU
|
| 387 |
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
| 388 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 389 |
|