Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import torch
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
-
import spaces
|
| 6 |
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
@@ -118,7 +117,7 @@ STYLE = """
|
|
| 118 |
.tree ul:has(> li:only-child)::before {
|
| 119 |
width:40px;
|
| 120 |
}
|
| 121 |
-
.
|
| 122 |
border-right: 2px solid var(--body-text-color);
|
| 123 |
border-bottom: 2px solid var(--body-text-color);
|
| 124 |
content: "";
|
|
@@ -150,13 +149,13 @@ STYLE = """
|
|
| 150 |
}
|
| 151 |
/*Hover-Section*/
|
| 152 |
.tree li a:hover, .tree li a:hover+ul li a {
|
| 153 |
-
background:
|
| 154 |
}
|
| 155 |
-
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
| 156 |
-
border-color:
|
| 157 |
}
|
| 158 |
-
.end-of-text, .chosen {
|
| 159 |
-
background-color:
|
| 160 |
}
|
| 161 |
.end-of-text {
|
| 162 |
width:auto!important;
|
|
@@ -164,7 +163,10 @@ STYLE = """
|
|
| 164 |
.nonfinal {
|
| 165 |
width:280px;
|
| 166 |
min-width: 280px;
|
| 167 |
-
}
|
|
|
|
|
|
|
|
|
|
| 168 |
"""
|
| 169 |
|
| 170 |
|
|
@@ -186,7 +188,7 @@ def generate_markdown_table(
|
|
| 186 |
token = tokenizer.decode([token_idx])
|
| 187 |
item_class = ""
|
| 188 |
if chosen_tokens and token in chosen_tokens:
|
| 189 |
-
item_class = "chosen"
|
| 190 |
markdown_table += f"""
|
| 191 |
<tr class={item_class}>
|
| 192 |
<td>{clean(token)}</td>
|
|
@@ -198,16 +200,16 @@ def generate_markdown_table(
|
|
| 198 |
return markdown_table
|
| 199 |
|
| 200 |
|
| 201 |
-
def generate_nodes(
|
| 202 |
"""Recursively generate HTML for the tree nodes."""
|
| 203 |
-
token = tokenizer.decode([
|
|
|
|
|
|
|
| 204 |
|
| 205 |
if node.is_final:
|
| 206 |
-
return f"<li> <a href='#' class='end-of-text'> <span> <b>{clean(token)}</b> <br>Total score: {node.total_score:.2f}</span> </a> </li>"
|
| 207 |
|
| 208 |
-
html_content = (
|
| 209 |
-
f"<li> <a href='#' class='nonfinal'> <span> <b>{clean(token)}</b> </span>"
|
| 210 |
-
)
|
| 211 |
if node.table is not None:
|
| 212 |
html_content += node.table
|
| 213 |
html_content += "</a>"
|
|
@@ -215,7 +217,7 @@ def generate_nodes(token_ix, node, step):
|
|
| 215 |
if len(node.children.keys()) > 0:
|
| 216 |
html_content += "<ul> "
|
| 217 |
for token_ix, subnode in node.children.items():
|
| 218 |
-
html_content += generate_nodes(
|
| 219 |
html_content += "</ul>"
|
| 220 |
html_content += "</li>"
|
| 221 |
|
|
@@ -227,8 +229,8 @@ def generate_html(start_sentence, original_tree):
|
|
| 227 |
<div class="tree">
|
| 228 |
<ul> <li> <a href='#' id='root'> <span> <b>{start_sentence}</b> </span> {original_tree.table} </a>"""
|
| 229 |
html_output += "<ul> "
|
| 230 |
-
for
|
| 231 |
-
html_output += generate_nodes(
|
| 232 |
html_output += "</ul>"
|
| 233 |
html_output += """
|
| 234 |
</li> </ul>
|
|
@@ -249,24 +251,25 @@ class BeamNode:
|
|
| 249 |
cumulative_score: float
|
| 250 |
children_score_divider: float
|
| 251 |
table: str
|
| 252 |
-
|
| 253 |
children: Dict[int, "BeamNode"]
|
| 254 |
total_score: float
|
| 255 |
is_final: bool
|
|
|
|
| 256 |
|
| 257 |
|
| 258 |
-
def generate_beams(start_sentence, scores,
|
| 259 |
-
sequences = sequences.cpu().numpy()
|
| 260 |
input_length = len(tokenizer([start_sentence], return_tensors="pt"))
|
| 261 |
original_tree = BeamNode(
|
| 262 |
cumulative_score=0,
|
| 263 |
current_token_ix=None,
|
| 264 |
table=None,
|
| 265 |
-
|
| 266 |
children={},
|
| 267 |
children_score_divider=((input_length + 1) ** length_penalty),
|
| 268 |
total_score=None,
|
| 269 |
is_final=False,
|
|
|
|
| 270 |
)
|
| 271 |
n_beams = len(scores[0])
|
| 272 |
beam_trees = [original_tree] * n_beams
|
|
@@ -296,7 +299,7 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
| 296 |
+ current_beam.cumulative_score
|
| 297 |
)
|
| 298 |
beam_indexes += [beam_ix] * n_beams
|
| 299 |
-
current_completions += [beam_trees[beam_ix].
|
| 300 |
top_tokens += [tokenizer.decode([el]) for el in current_top_token_indexes]
|
| 301 |
|
| 302 |
top_df = pd.DataFrame.from_dict(
|
|
@@ -347,12 +350,14 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
| 347 |
cumulative_scores[source_beam_ix]
|
| 348 |
+ scores[step][source_beam_ix][current_token_choice_ix].numpy()
|
| 349 |
)
|
|
|
|
|
|
|
|
|
|
| 350 |
beam_trees[source_beam_ix].children[current_token_choice_ix] = BeamNode(
|
| 351 |
current_token_ix=current_token_choice_ix,
|
| 352 |
table=None,
|
| 353 |
children={},
|
| 354 |
-
|
| 355 |
-
+ current_token_choice,
|
| 356 |
cumulative_score=cumulative_score,
|
| 357 |
total_score=cumulative_score
|
| 358 |
/ ((input_length + step - 1) ** length_penalty),
|
|
@@ -361,6 +366,7 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
| 361 |
step == len(scores) - 1
|
| 362 |
or current_token_choice_ix == tokenizer.eos_token_id
|
| 363 |
),
|
|
|
|
| 364 |
)
|
| 365 |
|
| 366 |
# Reassign all beams at once
|
|
@@ -376,7 +382,7 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
| 376 |
|
| 377 |
return original_tree
|
| 378 |
|
| 379 |
-
|
| 380 |
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
| 381 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 382 |
|
|
@@ -390,17 +396,21 @@ def get_beam_search_html(input_text, number_steps, number_beams, length_penalty)
|
|
| 390 |
output_scores=True,
|
| 391 |
do_sample=False,
|
| 392 |
)
|
| 393 |
-
markdown = "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
# Sequences are padded anyway so you can batch decode them
|
| 395 |
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
|
| 396 |
for i, sequence in enumerate(decoded_sequences):
|
| 397 |
-
markdown += f"\n-
|
| 398 |
|
| 399 |
original_tree = generate_beams(
|
| 400 |
input_text,
|
| 401 |
outputs.scores[:],
|
| 402 |
-
outputs.sequences[:, :],
|
| 403 |
length_penalty,
|
|
|
|
| 404 |
)
|
| 405 |
html = generate_html(input_text, original_tree)
|
| 406 |
return html, markdown
|
|
@@ -408,20 +418,21 @@ def get_beam_search_html(input_text, number_steps, number_beams, length_penalty)
|
|
| 408 |
|
| 409 |
with gr.Blocks(
|
| 410 |
theme=gr.themes.Soft(
|
| 411 |
-
|
|
|
|
| 412 |
),
|
| 413 |
css=STYLE,
|
| 414 |
) as demo:
|
| 415 |
gr.Markdown(
|
| 416 |
-
"""# Beam
|
| 417 |
|
| 418 |
Play with the parameters below to understand how beam search decoding works!
|
| 419 |
|
| 420 |
-
#### Parameters
|
| 421 |
-
- **Sentence to decode from
|
| 422 |
-
- **Number of steps
|
| 423 |
-
- **Number of beams
|
| 424 |
-
- **Length penalty
|
| 425 |
This parameter will not impact the beam search paths, but only influence the choice of sequences in the end towards longer or shorter sequences.
|
| 426 |
"""
|
| 427 |
)
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 7 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
|
|
| 117 |
.tree ul:has(> li:only-child)::before {
|
| 118 |
width:40px;
|
| 119 |
}
|
| 120 |
+
.child:before {
|
| 121 |
border-right: 2px solid var(--body-text-color);
|
| 122 |
border-bottom: 2px solid var(--body-text-color);
|
| 123 |
content: "";
|
|
|
|
| 149 |
}
|
| 150 |
/*Hover-Section*/
|
| 151 |
.tree li a:hover, .tree li a:hover+ul li a {
|
| 152 |
+
background: var(--primary-700);
|
| 153 |
}
|
| 154 |
+
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before, .tree li a:hover+ul a::before {
|
| 155 |
+
border-color: var(--primary-200);
|
| 156 |
}
|
| 157 |
+
.end-of-text, .chosen-token {
|
| 158 |
+
background-color: var(--primary-600);
|
| 159 |
}
|
| 160 |
.end-of-text {
|
| 161 |
width:auto!important;
|
|
|
|
| 163 |
.nonfinal {
|
| 164 |
width:280px;
|
| 165 |
min-width: 280px;
|
| 166 |
+
}
|
| 167 |
+
.selected-sequence {
|
| 168 |
+
background-color: var(--secondary-600)!important;
|
| 169 |
+
}
|
| 170 |
"""
|
| 171 |
|
| 172 |
|
|
|
|
| 188 |
token = tokenizer.decode([token_idx])
|
| 189 |
item_class = ""
|
| 190 |
if chosen_tokens and token in chosen_tokens:
|
| 191 |
+
item_class = "chosen-token"
|
| 192 |
markdown_table += f"""
|
| 193 |
<tr class={item_class}>
|
| 194 |
<td>{clean(token)}</td>
|
|
|
|
| 200 |
return markdown_table
|
| 201 |
|
| 202 |
|
| 203 |
+
def generate_nodes(node, step):
|
| 204 |
"""Recursively generate HTML for the tree nodes."""
|
| 205 |
+
token = tokenizer.decode([node.current_token_ix])
|
| 206 |
+
|
| 207 |
+
selected_class = "selected-sequence" if node.is_selected_sequence else ""
|
| 208 |
|
| 209 |
if node.is_final:
|
| 210 |
+
return f"<li> <a href='#' class='end-of-text child {selected_class}'> <span> <b>{clean(token)}</b> <br>Total score: {node.total_score:.2f}</span> </a> </li>"
|
| 211 |
|
| 212 |
+
html_content = f"<li> <a href='#' class='nonfinal child {selected_class}'> <span> <b>{clean(token)}</b> </span>"
|
|
|
|
|
|
|
| 213 |
if node.table is not None:
|
| 214 |
html_content += node.table
|
| 215 |
html_content += "</a>"
|
|
|
|
| 217 |
if len(node.children.keys()) > 0:
|
| 218 |
html_content += "<ul> "
|
| 219 |
for token_ix, subnode in node.children.items():
|
| 220 |
+
html_content += generate_nodes(subnode, step=step + 1)
|
| 221 |
html_content += "</ul>"
|
| 222 |
html_content += "</li>"
|
| 223 |
|
|
|
|
| 229 |
<div class="tree">
|
| 230 |
<ul> <li> <a href='#' id='root'> <span> <b>{start_sentence}</b> </span> {original_tree.table} </a>"""
|
| 231 |
html_output += "<ul> "
|
| 232 |
+
for subnode in original_tree.children.values():
|
| 233 |
+
html_output += generate_nodes(subnode, step=1)
|
| 234 |
html_output += "</ul>"
|
| 235 |
html_output += """
|
| 236 |
</li> </ul>
|
|
|
|
| 251 |
cumulative_score: float
|
| 252 |
children_score_divider: float
|
| 253 |
table: str
|
| 254 |
+
current_sequence: str
|
| 255 |
children: Dict[int, "BeamNode"]
|
| 256 |
total_score: float
|
| 257 |
is_final: bool
|
| 258 |
+
is_selected_sequence: bool
|
| 259 |
|
| 260 |
|
| 261 |
+
def generate_beams(start_sentence, scores, length_penalty, decoded_sequences):
|
|
|
|
| 262 |
input_length = len(tokenizer([start_sentence], return_tensors="pt"))
|
| 263 |
original_tree = BeamNode(
|
| 264 |
cumulative_score=0,
|
| 265 |
current_token_ix=None,
|
| 266 |
table=None,
|
| 267 |
+
current_sequence=start_sentence,
|
| 268 |
children={},
|
| 269 |
children_score_divider=((input_length + 1) ** length_penalty),
|
| 270 |
total_score=None,
|
| 271 |
is_final=False,
|
| 272 |
+
is_selected_sequence=False,
|
| 273 |
)
|
| 274 |
n_beams = len(scores[0])
|
| 275 |
beam_trees = [original_tree] * n_beams
|
|
|
|
| 299 |
+ current_beam.cumulative_score
|
| 300 |
)
|
| 301 |
beam_indexes += [beam_ix] * n_beams
|
| 302 |
+
current_completions += [beam_trees[beam_ix].current_sequence] * n_beams
|
| 303 |
top_tokens += [tokenizer.decode([el]) for el in current_top_token_indexes]
|
| 304 |
|
| 305 |
top_df = pd.DataFrame.from_dict(
|
|
|
|
| 350 |
cumulative_scores[source_beam_ix]
|
| 351 |
+ scores[step][source_beam_ix][current_token_choice_ix].numpy()
|
| 352 |
)
|
| 353 |
+
current_sequence = (
|
| 354 |
+
beam_trees[source_beam_ix].current_sequence + current_token_choice
|
| 355 |
+
)
|
| 356 |
beam_trees[source_beam_ix].children[current_token_choice_ix] = BeamNode(
|
| 357 |
current_token_ix=current_token_choice_ix,
|
| 358 |
table=None,
|
| 359 |
children={},
|
| 360 |
+
current_sequence=current_sequence,
|
|
|
|
| 361 |
cumulative_score=cumulative_score,
|
| 362 |
total_score=cumulative_score
|
| 363 |
/ ((input_length + step - 1) ** length_penalty),
|
|
|
|
| 366 |
step == len(scores) - 1
|
| 367 |
or current_token_choice_ix == tokenizer.eos_token_id
|
| 368 |
),
|
| 369 |
+
is_selected_sequence=(current_sequence in decoded_sequences),
|
| 370 |
)
|
| 371 |
|
| 372 |
# Reassign all beams at once
|
|
|
|
| 382 |
|
| 383 |
return original_tree
|
| 384 |
|
| 385 |
+
|
| 386 |
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
| 387 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 388 |
|
|
|
|
| 396 |
output_scores=True,
|
| 397 |
do_sample=False,
|
| 398 |
)
|
| 399 |
+
markdown = "The conclusive sequences are the ones that end in an `<|endoftext|>` token or at the end of generation."
|
| 400 |
+
markdown += "\n\nThey are ranked by their scores, as given by the formula `score = cumulative_score / (output_length ** length_penalty)`.\n\n"
|
| 401 |
+
markdown += "Only the top `num_beams` scoring sequences are returned: in the tree they are highlighted in **<span style='color:var(--secondary-600)!important'>blue</span>**."
|
| 402 |
+
markdown += " The non-selected sequences are also shown in the tree, highlighted in **<span style='color:var(--primary-600)!important'>yellow</span>**."
|
| 403 |
+
markdown += "\n#### <span style='color:var(--secondary-600)!important'>Output sequences:</span>"
|
| 404 |
# Sequences are padded anyway so you can batch decode them
|
| 405 |
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
|
| 406 |
for i, sequence in enumerate(decoded_sequences):
|
| 407 |
+
markdown += f"\n- Score `{outputs.sequences_scores[i]:.2f}`: `{clean(sequence.replace('<s> ', ''))}`"
|
| 408 |
|
| 409 |
original_tree = generate_beams(
|
| 410 |
input_text,
|
| 411 |
outputs.scores[:],
|
|
|
|
| 412 |
length_penalty,
|
| 413 |
+
decoded_sequences,
|
| 414 |
)
|
| 415 |
html = generate_html(input_text, original_tree)
|
| 416 |
return html, markdown
|
|
|
|
| 418 |
|
| 419 |
with gr.Blocks(
|
| 420 |
theme=gr.themes.Soft(
|
| 421 |
+
primary_hue=gr.themes.colors.yellow,
|
| 422 |
+
secondary_hue=gr.themes.colors.blue,
|
| 423 |
),
|
| 424 |
css=STYLE,
|
| 425 |
) as demo:
|
| 426 |
gr.Markdown(
|
| 427 |
+
"""# <span style='color:var(--primary-600)!important'>Beam Search Visualizer</span>
|
| 428 |
|
| 429 |
Play with the parameters below to understand how beam search decoding works!
|
| 430 |
|
| 431 |
+
#### <span style='color:var(--primary-600)!important'>Parameters:</span>
|
| 432 |
+
- **Sentence to decode from** (`inputs`): the input sequence to your decoder.
|
| 433 |
+
- **Number of steps** (`max_new_tokens`): the number of tokens to generate
|
| 434 |
+
- **Number of beams** (`num_beams`): the number of beams to use
|
| 435 |
+
- **Length penalty** (`length_penalty`): the length penalty to apply to outputs. `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences.
|
| 436 |
This parameter will not impact the beam search paths, but only influence the choice of sequences in the end towards longer or shorter sequences.
|
| 437 |
"""
|
| 438 |
)
|