Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,82 +2,75 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import pandas as pd
|
| 5 |
-
import base64
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
-
from
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Load environment variables
|
| 10 |
load_dotenv()
|
| 11 |
|
| 12 |
-
# ---
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
self.instructions = (
|
| 20 |
-
"You are a helpful assistant. For every question
|
| 21 |
"no units, and no extra words. If the answer is a number, just return the number. "
|
| 22 |
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
|
| 23 |
"Do not include any prefix, suffix, or explanation."
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
-
def
|
| 27 |
-
with open(image_path, "rb") as img_file:
|
| 28 |
-
return base64.b64encode(img_file.read()).decode("utf-8")
|
| 29 |
-
|
| 30 |
-
def _process_image(self, image_path, question):
|
| 31 |
-
base64_image = self._encode_image(image_path)
|
| 32 |
-
prompt = f"{self.instructions}\n\n{question}"
|
| 33 |
-
chat_completion = self.client.chat.completions.create(
|
| 34 |
-
model=self.llava_model,
|
| 35 |
-
messages=[
|
| 36 |
-
{"role": "user", "content": [
|
| 37 |
-
{"type": "text", "text": prompt},
|
| 38 |
-
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
| 39 |
-
]}
|
| 40 |
-
]
|
| 41 |
-
)
|
| 42 |
-
answer = chat_completion.choices[0].message.content.strip()
|
| 43 |
-
return self._extract_final_answer(answer)
|
| 44 |
-
|
| 45 |
-
def _process_audio(self, audio_path):
|
| 46 |
-
with open(audio_path, "rb") as audio_file:
|
| 47 |
-
transcript = self.client.audio.transcriptions.create(
|
| 48 |
-
model=self.whisper_model,
|
| 49 |
-
file=audio_file
|
| 50 |
-
)
|
| 51 |
-
return transcript.text.strip()
|
| 52 |
-
|
| 53 |
-
def _process_text(self, question):
|
| 54 |
prompt = f"{self.instructions}\n\n{question}"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
answer = chat_completion.choices[0].message.content.strip()
|
| 60 |
-
return self._extract_final_answer(answer)
|
| 61 |
-
|
| 62 |
-
def _extract_final_answer(self, llm_output: str) -> str:
|
| 63 |
for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
|
| 64 |
-
if
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
-
# --- Gradio Leaderboard Submission App ---
|
| 77 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 78 |
-
|
| 79 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 80 |
-
space_id = os.getenv("SPACE_ID")
|
| 81 |
if profile:
|
| 82 |
username = f"{profile.username}"
|
| 83 |
print(f"User logged in: {username}")
|
|
@@ -89,8 +82,9 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 89 |
questions_url = f"{api_url}/questions"
|
| 90 |
submit_url = f"{api_url}/submit"
|
| 91 |
|
|
|
|
| 92 |
try:
|
| 93 |
-
agent =
|
| 94 |
except Exception as e:
|
| 95 |
print(f"Error instantiating agent: {e}")
|
| 96 |
return f"Error initializing agent: {e}", None
|
|
@@ -98,6 +92,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 98 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 99 |
print(agent_code)
|
| 100 |
|
|
|
|
| 101 |
print(f"Fetching questions from: {questions_url}")
|
| 102 |
try:
|
| 103 |
response = requests.get(questions_url, timeout=15)
|
|
@@ -118,19 +113,18 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 118 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 119 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 120 |
|
|
|
|
| 121 |
results_log = []
|
| 122 |
answers_payload = []
|
| 123 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 124 |
for item in questions_data:
|
| 125 |
task_id = item.get("task_id")
|
| 126 |
question_text = item.get("question")
|
| 127 |
-
image_path = item.get("image_path", None)
|
| 128 |
-
audio_path = item.get("audio_path", None)
|
| 129 |
if not task_id or question_text is None:
|
| 130 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 131 |
continue
|
| 132 |
try:
|
| 133 |
-
submitted_answer = agent(question_text
|
| 134 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 135 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 136 |
except Exception as e:
|
|
@@ -141,10 +135,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 141 |
print("Agent did not produce any answers to submit.")
|
| 142 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 143 |
|
|
|
|
| 144 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 145 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 146 |
print(status_update)
|
| 147 |
-
|
| 148 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 149 |
try:
|
| 150 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
@@ -195,23 +190,30 @@ with gr.Blocks() as demo:
|
|
| 195 |
**Instructions:**
|
| 196 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 197 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 198 |
-
3.
|
| 199 |
---
|
| 200 |
**Disclaimers:**
|
| 201 |
-
Once clicking on the "submit button, it can take quite some time (
|
| 202 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
|
| 203 |
"""
|
| 204 |
)
|
| 205 |
|
| 206 |
gr.LoginButton()
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 209 |
|
| 210 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 211 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 212 |
|
| 213 |
run_button.click(
|
| 214 |
-
fn=run_and_submit_all,
|
|
|
|
| 215 |
outputs=[status_output, results_table]
|
| 216 |
)
|
| 217 |
|
|
@@ -237,3 +239,4 @@ if __name__ == "__main__":
|
|
| 237 |
|
| 238 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 239 |
demo.launch(debug=True, share=False)
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
+
from langchain_openai import ChatOpenAI
|
| 7 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 8 |
+
from langchain_groq import ChatGroq
|
| 9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 10 |
|
| 11 |
# Load environment variables
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
+
# --- Constants ---
|
| 15 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 16 |
+
|
| 17 |
+
# --- Basic Agent Definition ---
|
| 18 |
+
class BasicAgent:
|
| 19 |
+
def __init__(self, provider="nvidia"):
|
| 20 |
+
self.provider = provider.lower()
|
| 21 |
+
if self.provider == "nvidia":
|
| 22 |
+
self.llm = ChatNVIDIA(
|
| 23 |
+
model="meta/llama-3.3-70b-instruct",
|
| 24 |
+
nvidia_api_key=os.getenv("NVIDIA_API_KEY")
|
| 25 |
+
)
|
| 26 |
+
elif self.provider == "groq":
|
| 27 |
+
self.llm = ChatGroq(
|
| 28 |
+
model="llama3-70b-8192",
|
| 29 |
+
api_key=os.getenv("GROQ_API_KEY")
|
| 30 |
+
)
|
| 31 |
+
elif self.provider == "google":
|
| 32 |
+
self.llm = ChatGoogleGenerativeAI(
|
| 33 |
+
model="gemini-2.0-flash",
|
| 34 |
+
temperature=0.1,
|
| 35 |
+
max_tokens=1024,
|
| 36 |
+
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 37 |
+
streaming=False
|
| 38 |
+
)
|
| 39 |
+
elif self.provider == "openai":
|
| 40 |
+
self.llm = ChatOpenAI(
|
| 41 |
+
model="gpt-3.5-turbo",
|
| 42 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
| 43 |
+
)
|
| 44 |
+
else:
|
| 45 |
+
raise ValueError("Unsupported provider. Choose from: nvidia, groq, google, openai.")
|
| 46 |
+
|
| 47 |
self.instructions = (
|
| 48 |
+
"You are a helpful assistant. For every question, reply with only the answer—no explanation, "
|
| 49 |
"no units, and no extra words. If the answer is a number, just return the number. "
|
| 50 |
"If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
|
| 51 |
"Do not include any prefix, suffix, or explanation."
|
| 52 |
)
|
| 53 |
+
print(f"BasicAgent initialized with provider: {self.provider}")
|
| 54 |
|
| 55 |
+
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
prompt = f"{self.instructions}\n\n{question}"
|
| 57 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 58 |
+
response = self.llm.invoke(prompt)
|
| 59 |
+
answer = response.content.strip() if hasattr(response, "content") else str(response)
|
| 60 |
+
# Remove "FINAL ANSWER:" or similar prefixes if present
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
|
| 62 |
+
if answer.lower().startswith(prefix.lower()):
|
| 63 |
+
answer = answer[len(prefix):].strip()
|
| 64 |
+
print(f"Agent returning answer: {answer}")
|
| 65 |
+
return answer
|
| 66 |
+
|
| 67 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None, provider="nvidia"):
|
| 68 |
+
"""
|
| 69 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 70 |
+
and displays the results.
|
| 71 |
+
"""
|
| 72 |
+
space_id = os.getenv("SPACE_ID") # For codebase link
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
if profile:
|
| 75 |
username = f"{profile.username}"
|
| 76 |
print(f"User logged in: {username}")
|
|
|
|
| 82 |
questions_url = f"{api_url}/questions"
|
| 83 |
submit_url = f"{api_url}/submit"
|
| 84 |
|
| 85 |
+
# 1. Instantiate Agent
|
| 86 |
try:
|
| 87 |
+
agent = BasicAgent(provider=provider)
|
| 88 |
except Exception as e:
|
| 89 |
print(f"Error instantiating agent: {e}")
|
| 90 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 92 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 93 |
print(agent_code)
|
| 94 |
|
| 95 |
+
# 2. Fetch Questions
|
| 96 |
print(f"Fetching questions from: {questions_url}")
|
| 97 |
try:
|
| 98 |
response = requests.get(questions_url, timeout=15)
|
|
|
|
| 113 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 114 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 115 |
|
| 116 |
+
# 3. Run your Agent
|
| 117 |
results_log = []
|
| 118 |
answers_payload = []
|
| 119 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 120 |
for item in questions_data:
|
| 121 |
task_id = item.get("task_id")
|
| 122 |
question_text = item.get("question")
|
|
|
|
|
|
|
| 123 |
if not task_id or question_text is None:
|
| 124 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 125 |
continue
|
| 126 |
try:
|
| 127 |
+
submitted_answer = agent(question_text)
|
| 128 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 129 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 130 |
except Exception as e:
|
|
|
|
| 135 |
print("Agent did not produce any answers to submit.")
|
| 136 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 137 |
|
| 138 |
+
# 4. Prepare Submission
|
| 139 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 140 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 141 |
print(status_update)
|
| 142 |
+
# 5. Submit
|
| 143 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 144 |
try:
|
| 145 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
|
| 190 |
**Instructions:**
|
| 191 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 192 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 193 |
+
3. Select your preferred provider and click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 194 |
---
|
| 195 |
**Disclaimers:**
|
| 196 |
+
Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
|
| 197 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance, for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
|
| 198 |
"""
|
| 199 |
)
|
| 200 |
|
| 201 |
gr.LoginButton()
|
| 202 |
|
| 203 |
+
provider_dropdown = gr.Dropdown(
|
| 204 |
+
choices=["nvidia", "groq", "google", "openai"],
|
| 205 |
+
value="nvidia",
|
| 206 |
+
label="Choose LLM Provider"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 210 |
|
| 211 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 212 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 213 |
|
| 214 |
run_button.click(
|
| 215 |
+
fn=lambda profile, provider: run_and_submit_all(profile, provider),
|
| 216 |
+
inputs=[gr.OAuthProfile(), provider_dropdown],
|
| 217 |
outputs=[status_output, results_table]
|
| 218 |
)
|
| 219 |
|
|
|
|
| 239 |
|
| 240 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 241 |
demo.launch(debug=True, share=False)
|
| 242 |
+
|