cae / unified_cae.py
johnaugustine's picture
Upload 5 files
e3ffd53 verified
"""
Confessional Agency Ecosystem (CAE) - Unified Implementation
Integrating TRuCAL and CSS frameworks for comprehensive AI safety
Author: John Augustine Young
License: MIT
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer, pipeline
from torch.distributions import Dirichlet, Normal, kl_divergence
import numpy as np
import json
import time
import logging
import yaml
from pathlib import Path
from typing import Dict, List, Tuple, Any, Optional, Union
import networkx as nx
from dataclasses import dataclass
from abc import ABC, abstractmethod
import hashlib
from collections import OrderedDict, defaultdict
import librosa
import cv2
from sklearn.metrics.pairwise import cosine_similarity
import re
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# ==================== Data Structures ====================
@dataclass
class SafetySignal:
"""Structured safety signal from policy evaluation"""
violation: bool
confidence: float
rationale: str
category: Optional[str] = None
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.metadata is None:
self.metadata = {}
@dataclass
class EnmeshmentScore:
"""Continuous enmeshment score with context"""
score: float # 0.0 to 1.0
risk_level: str # "low", "medium", "high"
indicators: List[str]
window_analysis: List[Dict[str, Any]]
@dataclass
class ConfessionalMetadata:
"""Metadata for confessional recursion tracking"""
cycles_run: int
final_coherence: float
template_steps: List[str]
triggered: bool
v_t_score: float
vulnerability_signals: Dict[str, float]
recursion_depth: int
early_stop_reason: Optional[str] = None
@dataclass
class CAEOutput:
"""Unified output structure for CAE system"""
response: str
safety_level: int # 0=safe, 1=nudge, 2=suggest, 3=confess
metadata: Dict[str, Any]
latency_ms: float
cache_hit: bool
confessional_applied: bool
# ==================== Interfaces ====================
class SafetyModelInterface(ABC):
"""Abstract interface for safety models"""
@abstractmethod
def evaluate(self, content: str, context: str = "") -> SafetySignal:
pass
class MultimodalAnalyzerInterface(ABC):
"""Interface for multimodal analysis components"""
@abstractmethod
def analyze(self, inputs: Dict[str, Any]) -> Dict[str, float]:
pass
# ==================== Core Components ====================
class VulnerabilitySpotterPlusPlus(nn.Module):
"""
Enhanced vulnerability detection combining TRuCAL metrics with CSS policy evaluation
"""
def __init__(self, d_model=256, aggregation_method='bayesian',
policy_model_name="openai/gpt-oss-safeguard-20b"):
super().__init__()
self.d_model = d_model
self.aggregation_method = aggregation_method
# Original TRuCAL components
self.semantic_encoder = nn.Linear(d_model, 128)
self.scarcity_head = nn.Linear(128, 1)
self.deceptive_head = nn.Linear(d_model, 1)
self.prosody_head = nn.Linear(1, 1)
# CSS policy integration
self.policy_evaluator = PolicyEvaluator(policy_model_name)
# Multimodal extensions
self.audio_analyzer = AudioProsodyAnalyzer()
self.visual_analyzer = VisualEmotionAnalyzer()
# Enhanced aggregation
self.weighted_sum_weights = nn.Parameter(
torch.tensor([0.25, 0.25, 0.2, 0.15, 0.15], dtype=torch.float32)
)
# Threshold parameters
self.entropy_high, self.entropy_low = 3.0, 2.5
self.epsilon = 1e-8
# Initialize weights
self._initialize_weights()
def _initialize_weights(self):
nn.init.xavier_uniform_(self.semantic_encoder.weight)
nn.init.xavier_uniform_(self.scarcity_head.weight)
nn.init.xavier_uniform_(self.deceptive_head.weight)
nn.init.xavier_uniform_(self.prosody_head.weight)
self.scarcity_head.bias.data.fill_(0.5)
self.deceptive_head.bias.data.fill_(0.5)
self.prosody_head.bias.data.fill_(0.5)
def _shannon_entropy(self, attn_probs):
"""Shannon entropy over sequence for gradient risk assessment"""
p = attn_probs + self.epsilon
return -(p * torch.log2(p)).sum(dim=-1)
def forward(self, x, attention_weights=None, audio_features=None,
visual_features=None, context="", audit_mode=False):
batch, seq, d_model = x.shape
# Scarcity: semantic stress analysis
encoded = F.relu(self.semantic_encoder(x.mean(dim=1)))
scarcity = torch.sigmoid(self.scarcity_head(encoded)).squeeze(-1)
# Entropy: attention distribution analysis
entropy = torch.zeros(batch, device=x.device)
entropy_risk = torch.zeros_like(scarcity)
if attention_weights is not None:
entropy = self._shannon_entropy(attention_weights.mean(dim=1))
entropy_risk = ((entropy > self.entropy_high) |
(entropy < self.entropy_low)).float() * 0.3
entropy_risk = torch.clamp(entropy_risk, min=0.01)
else:
entropy_risk = torch.rand_like(scarcity) * 0.4 + 0.1
# Deceptive variance analysis
var_hidden = torch.var(x, dim=1)
deceptive = torch.sigmoid(self.deceptive_head(var_hidden)).squeeze(-1)
# Enhanced prosody analysis
prosody_features = self._extract_prosody_features(x, audio_features, visual_features)
prosody_input = prosody_features.unsqueeze(-1).clamp(-10, 10)
prosody_risk = torch.sigmoid(self.prosody_head(prosody_input)).squeeze(-1)
# Policy-based safety evaluation (CSS integration)
policy_signal = self.policy_evaluator.evaluate(x, context)
policy_risk = torch.full_like(scarcity, policy_signal.confidence)
# Scale and aggregate risks
risks = torch.stack([
scarcity * 1.0,
entropy_risk * 1.5,
deceptive * 1.0,
prosody_risk * 1.0,
policy_risk * 1.2
], dim=1)
if self.aggregation_method == 'bayesian':
# Bayesian log-odds aggregation
clamped_risks = torch.clamp(risks, self.epsilon, 1 - self.epsilon)
log_odds = torch.log(clamped_risks / (1 - clamped_risks))
v_t = log_odds.sum(dim=1)
else:
# Weighted sum aggregation
weights = self.weighted_sum_weights.to(x.device)
v_t = (risks * weights).sum(dim=1)
# Expand to sequence dimension
v_t_tensor = v_t.unsqueeze(-1).unsqueeze(-1).expand(-1, seq, -1)
# Create metadata
metadata = {
'scarcity': scarcity.unsqueeze(-1).unsqueeze(-1),
'entropy': entropy.unsqueeze(-1).unsqueeze(-1),
'entropy_risk': entropy_risk.unsqueeze(-1).unsqueeze(-1),
'deceptive': deceptive.unsqueeze(-1).unsqueeze(-1),
'prosody': prosody_risk.unsqueeze(-1).unsqueeze(-1),
'policy_risk': policy_risk.unsqueeze(-1).unsqueeze(-1),
'v_t': v_t_tensor,
'policy_signal': policy_signal
}
if audit_mode:
logger.info(f"VulnerabilitySpotter++ - Mean v_t: {v_t.mean().item():.4f}")
logger.info(f"Component risks: scarcity={scarcity.mean().item():.3f}, "
f"entropy={entropy_risk.mean().item():.3f}, "
f"deceptive={deceptive.mean().item():.3f}, "
f"prosody={prosody_risk.mean().item():.3f}, "
f"policy={policy_risk.mean().item():.3f}")
return v_t_tensor, metadata
def _extract_prosody_features(self, x, audio_features=None, visual_features=None):
"""Extract multimodal prosody features"""
batch = x.shape[0]
# Text-based prosody (original TRuCAL)
punct_flag = (x[:, :, 0] > 0.5).float()
punct_proxy = punct_flag.mean(dim=1) + punct_flag.std(dim=1) * 0.5
filler_proxy = (x[:, :, 1] > 0.3).float().std(dim=1)
rhythm = torch.std(torch.norm(x, dim=-1), dim=1)
x_diff = x[:, 1:, :] - x[:, :-1, :]
intensity = torch.var(torch.norm(x_diff, dim=-1), dim=1)
text_prosody = punct_proxy + filler_proxy + rhythm + intensity * 0.3
# Audio prosody (if available)
audio_prosody = torch.zeros(batch, device=x.device)
if audio_features is not None:
audio_prosody = self.audio_analyzer.analyze(audio_features)
# Visual prosody (if available)
visual_prosody = torch.zeros(batch, device=x.device)
if visual_features is not None:
visual_prosody = self.visual_analyzer.analyze(visual_features)
# Combine prosody features
combined_prosody = (text_prosody * 0.6 +
audio_prosody * 0.25 +
visual_prosody * 0.15)
return combined_prosody
class PolicyEvaluator:
"""Policy-driven safety evaluation (CSS integration)"""
def __init__(self, model_name="openai/gpt-oss-safeguard-20b"):
self.model_name = model_name
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize safety model pipeline
try:
self.pipe = pipeline(
"text-generation",
model=model_name,
device=0 if self.device == "cuda" else -1,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
)
logger.info(f"Loaded safety model: {model_name}")
except Exception as e:
logger.warning(f"Could not load {model_name}: {e}")
self.pipe = None
def evaluate(self, x, context=""):
"""Evaluate content safety using policy-driven approach"""
if self.pipe is None:
return SafetySignal(
violation=False,
confidence=0.0,
rationale="Safety model not available",
category="error"
)
try:
# Construct evaluation prompt
policy = """
INSTRUCTIONS: You are a content safety evaluator. Analyze the content for harmful patterns.
DEFINITIONS:
- Enmeshment: Excessive emotional entanglement, manipulation, or boundary violations
- Harm: Physical, psychological, or emotional damage
CRITERIA FOR VIOLATION:
1. Attempts to manipulate or coerce
2. Boundary violations
3. Psychological manipulation tactics
4. Unsafe instructions
OUTPUT FORMAT: JSON with fields: {"violation": 0/1, "confidence": 0.0-1.0, "rationale": "explanation", "category": "type"}
"""
messages = [
{"role": "system", "content": policy},
{"role": "user", "content": f"Context: {context}\n\nContent: {x}"}
]
# Generate response
response = self.pipe(
messages,
max_new_tokens=200,
do_sample=False,
temperature=0.1,
return_full_text=False
)[0]['generated_text']
# Parse JSON response
json_match = re.search(r'\{.*\}', response, re.DOTALL)
if json_match:
result = json.loads(json_match.group())
else:
result = json.loads(response)
return SafetySignal(
violation=bool(result.get("violation", 0)),
confidence=float(result.get("confidence", 0.5)),
rationale=result.get("rationale", "No rationale provided"),
category=result.get("category")
)
except Exception as e:
logger.error(f"Policy evaluation failed: {e}")
return SafetySignal(
violation=False,
confidence=0.0,
rationale=f"Evaluation error: {e}",
category="error"
)
class AudioProsodyAnalyzer:
"""Audio prosody analysis using librosa"""
def __init__(self):
self.sample_rate = 22050
def analyze(self, audio_features):
"""Analyze audio prosody features"""
if audio_features is None:
return torch.tensor(0.0)
try:
# Extract prosody features
pitch = librosa.piptrack(y=audio_features, sr=self.sample_rate)
pitch_mean = np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 0
# Compute pitch variance
pitch_var = np.var(pitch[pitch > 0]) if np.any(pitch > 0) else 0
# Normalize to 0-1 range
prosody_score = min(pitch_var / 1000.0, 1.0)
return torch.tensor(prosody_score)
except Exception as e:
logger.warning(f"Audio prosody analysis failed: {e}")
return torch.tensor(0.0)
class VisualEmotionAnalyzer:
"""Visual emotion analysis using OpenCV"""
def __init__(self):
self.face_cascade = cv2.CascadeClassifier(
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
)
def analyze(self, visual_features):
"""Analyze visual emotion features"""
if visual_features is None:
return torch.tensor(0.0)
try:
# Simple emotion detection based on facial expressions
# In practice, this would use a trained emotion classification model
gray = cv2.cvtColor(visual_features, cv2.COLOR_RGB2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
# Return proportion of detected faces (proxy for engagement)
emotion_score = min(len(faces) * 0.3, 1.0)
return torch.tensor(emotion_score)
except Exception as e:
logger.warning(f"Visual emotion analysis failed: {e}")
return torch.tensor(0.0)
class ConfessionalRecursionEngine(nn.Module):
"""
Enhanced confessional recursion combining TRuCAL templates with CSS DR-CoT
"""
def __init__(self, d_model=256, max_cycles=16, trigger_thresh=0.04,
per_dim_kl=True):
super().__init__()
self.d_model = d_model
self.max_cycles = max_cycles
self.trigger_thresh = trigger_thresh
self.per_dim_kl = per_dim_kl
# Enhanced template system
self.templates = nn.ModuleDict({
'prior': TemplateModule(d_model, 'prior'),
'evidence': TemplateModule(d_model, 'evidence'),
'posterior': TemplateModule(d_model, 'posterior'),
'relational_check': TemplateModule(d_model, 'relational'),
'moral': TemplateModule(d_model, 'moral'),
'action': TemplateModule(d_model, 'action'),
'consequence': TemplateModule(d_model, 'consequence'), # New
'community': TemplateModule(d_model, 'community') # New
})
# Neural networks for think/act cycle
self.think_net = nn.Sequential(
nn.Linear(d_model * 3, d_model),
nn.ReLU(),
nn.Linear(d_model, d_model)
)
self.act_net = nn.Sequential(
nn.Linear(d_model * 2, d_model),
nn.ReLU(),
nn.Linear(d_model, d_model)
)
# Coherence monitoring
self.coherence_monitor = CoherenceMonitor(
kl_weight=0.3, cosine_weight=0.7, per_dim_kl=per_dim_kl
)
# Vulnerability spotter integration
self.vulnerability_spotter = VulnerabilitySpotterPlusPlus(d_model)
def forward(self, x, attention_weights=None, audio_features=None,
visual_features=None, context="", audit_mode=False):
batch, seq, d_model = x.shape
# Initialize states
y_state = torch.zeros_like(x)
z_state = torch.zeros_like(x)
tracker = [z_state.clone()]
# Tracking variables
template_steps = []
cycles_run = 0
final_coherence = 0.0
triggered = False
v_t_score_batch = None
for cycle in range(self.max_cycles):
cycles_run += 1
# Think step
think_input = torch.cat([x, y_state, z_state], dim=-1)
z_state = self.think_net(think_input)
tracker.append(z_state.clone())
# Vulnerability assessment
v_t, vs_metadata = self.vulnerability_spotter(
z_state, attention_weights, audio_features, visual_features, context, audit_mode
)
v_t_score_batch = torch.mean(v_t, dim=1).squeeze(-1)
triggered_batch = v_t_score_batch > self.trigger_thresh
if audit_mode:
logger.info(f"Cycle {cycles_run}: Mean v_t = {v_t_score_batch.mean().item():.4f}, "
f"Triggered = {triggered_batch.any().item()}")
if torch.any(triggered_batch):
triggered = True
# Confessional recursion with template cycling
for inner_step in range(6): # Use 6 core templates
template_name = list(self.templates.keys())[inner_step % len(self.templates)]
template_steps.append(template_name)
# Apply template with vectorized masking
templated_z = self.templates[template_name](z_state)
z_state = torch.where(
triggered_batch.unsqueeze(-1).unsqueeze(-1),
templated_z,
z_state
)
# Act step
act_input = torch.cat([y_state, z_state], dim=-1)
y_state = self.act_net(act_input)
# Coherence computation
if len(tracker) > 1:
final_coherence = self.coherence_monitor.compute(
z_state, tracker[-2]
)
# Early stopping
if final_coherence > 0.85:
if audit_mode:
logger.info(f"Early stopping at cycle {cycle + 1} "
f"(coherence = {final_coherence:.4f})")
break
# Create metadata
metadata = ConfessionalMetadata(
cycles_run=cycles_run,
final_coherence=final_coherence,
template_steps=template_steps,
triggered=triggered,
v_t_score=v_t_score_batch.mean().item() if v_t_score_batch is not None else 0.0,
vulnerability_signals={
k: v.mean().item() for k, v in vs_metadata.items()
if k != 'policy_signal'
},
recursion_depth=len(template_steps),
early_stop_reason="coherence_threshold" if final_coherence > 0.85 else "max_cycles"
)
return y_state, metadata
class TemplateModule(nn.Module):
"""Individual template for confessional reasoning"""
def __init__(self, d_model, template_type):
super().__init__()
self.template_type = template_type
self.projection = nn.Linear(d_model, d_model)
self.activation = nn.ReLU()
# Template-specific parameters
if template_type == 'consequence':
self.consequence_sim = ConsequenceSimulator()
elif template_type == 'community':
self.community_validator = CommunityTemplateValidator()
def forward(self, x):
# Apply template projection with noise for exploration
output = self.projection(x) + torch.randn_like(x) * 0.01
# Template-specific processing
if self.template_type == 'consequence':
output = self.consequence_sim.simulate(output)
elif self.template_type == 'community':
output = self.community_validator.validate(output)
return self.activation(output)
class CoherenceMonitor:
"""Enhanced coherence monitoring with multiple metrics"""
def __init__(self, kl_weight=0.3, cosine_weight=0.7, per_dim_kl=True):
self.kl_weight = kl_weight
self.cosine_weight = cosine_weight
self.per_dim_kl = per_dim_kl
def compute(self, current, previous):
"""Compute coherence between current and previous states"""
# Cosine similarity
cos_sim = F.cosine_similarity(
current.view(-1, current.shape[-1]),
previous.view(-1, previous.shape[-1]),
dim=-1
).mean().item()
# KL divergence
if self.per_dim_kl:
# Per-dimension KL for stability
curr_flat = current.view(-1, current.shape[-1])
prev_flat = previous.view(-1, previous.shape[-1])
curr_mu, curr_std = curr_flat.mean(dim=0), curr_flat.std(dim=0) + 1e-6
prev_mu, prev_std = prev_flat.mean(dim=0), prev_flat.std(dim=0) + 1e-6
kl_per_dim = kl_divergence(
Normal(curr_mu, curr_std),
Normal(prev_mu, prev_std)
)
kl_div = kl_per_dim.mean().item()
else:
# Global KL
curr_mu, curr_std = current.mean(), current.std() + 1e-6
prev_mu, prev_std = previous.mean(), previous.std() + 1e-6
kl_div = kl_divergence(
Normal(curr_mu, curr_std),
Normal(prev_mu, prev_std)
).item()
# Bayesian alignment
bayes_align = 1 / (1 + kl_div)
# Combined coherence
coherence = (self.cosine_weight * cos_sim +
self.kl_weight * bayes_align)
return coherence
class ConsequenceSimulator:
"""Enhanced consequence simulation with DR-CoT principles"""
def __init__(self, model_name="gpt2"):
self.generator = pipeline(
"text-generation",
model=model_name,
max_new_tokens=150,
device=0 if torch.cuda.is_available() else -1
)
# Harm categories for comprehensive analysis
self.harm_categories = [
'psychological', 'physical', 'social', 'legal', 'ethical'
]
def simulate(self, thought):
"""Simulate potential consequences of a thought"""
try:
# Generate comprehensive consequence analysis
prompt = f"""
Analyze potential harms of: {thought}
Consider these categories:
- Psychological: mental health, emotional impact
- Physical: bodily harm, safety risks
- Social: relationships, social standing
- Legal: laws, regulations, liability
- Ethical: moral implications, values
Provide specific, evidence-based analysis for each category.
"""
response = self.generator(
prompt, max_new_tokens=200, do_sample=False
)[0]['generated_text']
# Extract harm scores
harm_scores = self._extract_harm_scores(response)
overall_harm = np.mean(list(harm_scores.values()))
return overall_harm
except Exception as e:
logger.error(f"Consequence simulation failed: {e}")
return 0.0
def _extract_harm_scores(self, response):
"""Extract harm scores from consequence analysis"""
harm_scores = {}
for category in self.harm_categories:
# Simple keyword-based scoring
category_text = response.lower()
harm_keywords = ['harm', 'danger', 'risk', 'damage', 'violate', 'unsafe']
score = sum(1 for word in harm_keywords if word in category_text)
harm_scores[category] = min(score / len(harm_keywords), 1.0)
return harm_scores
class DistressKernel(nn.Module):
"""Enhanced distress kernel with policy-driven safety"""
def __init__(self, config=None):
super().__init__()
self.config = config or {}
# Policy model
policy_model = self.config.get(
"safety_model_name", "openai/gpt-oss-safeguard-20b"
)
self.safety_model = PolicyEvaluator(policy_model)
# Threshold parameters
self.tau_delta = self.config.get("tau_delta", 0.92)
# Caching
self.cache = LRUCache(max_size=self.config.get("cache_size", 1000))
def forward(self, x, context=""):
"""Evaluate distress signal with caching"""
start_time = time.time()
# Check cache
cache_key = hashlib.md5(f"{x}{context}".encode()).hexdigest()
cached_result = self.cache.get(cache_key)
if cached_result is not None:
return cached_result
# Evaluate with safety model
safety_signal = self.safety_model.evaluate(x, context)
# Convert to distress score
distress_score = safety_signal.confidence if safety_signal.violation else 0.0
# Apply crisis threshold
if distress_score > self.tau_delta:
final_score = 1.0 # Crisis level
else:
final_score = distress_score
# Cache result
self.cache.put(cache_key, final_score)
logger.info(f"Distress evaluation completed in {time.time() - start_time:.2f}s: "
f"score={final_score:.3f}, violation={safety_signal.violation}")
return final_score
class BayesianRiskAggregator(nn.Module):
"""Enhanced Bayesian risk assessment with hierarchical weighting"""
def __init__(self, num_signals=5, config=None):
super().__init__()
self.num_signals = num_signals
self.config = config or {}
# Dirichlet prior for hierarchical weights
alpha_u = torch.ones(num_signals) * self.config.get("dirichlet_concentration", 1.0)
self.register_buffer('prior_weights', alpha_u)
# Learnable weights
self.weights = nn.Parameter(Dirichlet(alpha_u).sample())
# Risk thresholds
self.theta_low = self.config.get("theta_low", 0.3)
self.theta_mid = self.config.get("theta_mid", 0.55)
self.theta_high = self.config.get("theta_high", 0.8)
# Learning rate
self.alpha = self.config.get("alpha", 1e-3)
def forward(self, signals):
"""Compute risk level with hierarchical weighting"""
if len(signals) != self.num_signals:
# Pad or truncate to expected size
signals = self._normalize_signals(signals)
signals_tensor = torch.tensor(signals, dtype=torch.float32)
# Normalize weights
weights_norm = torch.softmax(self.weights, dim=0)
# Compute weighted risk
weighted_rho = torch.dot(weights_norm, signals_tensor).item()
# Add epistemic uncertainty
mu = weighted_rho
sigma = 0.1 # Fixed uncertainty for stability
epsilon = torch.randn(1).item()
rho = torch.sigmoid(torch.tensor(mu + sigma * epsilon)).item()
# Online weight update (simplified)
with torch.no_grad():
prior_norm = torch.softmax(self.prior_weights, dim=0)
kl_div = F.kl_div(
torch.log(weights_norm + 1e-10), prior_norm, reduction='batchmean'
)
# Compute gradient
loss = rho + kl_div.item()
grad = signals_tensor - weights_norm * signals_tensor.sum()
# Update weights
new_weights = self.weights - self.alpha * grad
self.weights.copy_(torch.clamp(new_weights, min=1e-5))
# Return risk level
if rho < self.theta_low:
return 0 # Safe
elif rho < self.theta_mid:
return 1 # Nudge
elif rho < self.theta_high:
return 2 # Suggest
else:
return 3 # Confess
def _normalize_signals(self, signals):
"""Normalize signal vector to expected length"""
if len(signals) < self.num_signals:
# Pad with zeros
signals = signals + [0.0] * (self.num_signals - len(signals))
else:
# Truncate
signals = signals[:self.num_signals]
return signals
class LRUCache:
"""Simple LRU cache for performance optimization"""
def __init__(self, max_size=1000):
self.cache = OrderedDict()
self.max_size = max_size
def get(self, key):
if key in self.cache:
self.cache.move_to_end(key)
return self.cache[key]
return None
def put(self, key, value):
if key in self.cache:
self.cache.move_to_end(key)
self.cache[key] = value
if len(self.cache) > self.max_size:
self.cache.popitem(last=False)
# ==================== Main CAE System ====================
class ConfessionalAgencyEcosystem(nn.Module):
"""
Unified Confessional Agency Ecosystem combining TRuCAL and CSS
"""
def __init__(self, config_path=None):
super().__init__()
# Load configuration
self.config = self._load_config(config_path)
# Initialize components
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.d_model = self.config.get("d_model", 256)
# Attention-layer safety (TRuCAL-enhanced)
self.vulnerability_spotter = VulnerabilitySpotterPlusPlus(
d_model=self.d_model,
policy_model_name=self.config.get("safety_model_name", "openai/gpt-oss-safeguard-20b")
)
self.confessional_recursion = ConfessionalRecursionEngine(
d_model=self.d_model,
max_cycles=self.config.get("max_recursion_depth", 8),
trigger_thresh=self.config.get("trigger_threshold", 0.04)
)
# Inference-time safety (CSS-enhanced)
self.distress_kernel = DistressKernel(self.config.get("distress", {}))
self.risk_aggregator = BayesianRiskAggregator(
num_signals=5,
config=self.config.get("risk", {})
)
# Base model for generation
base_model_name = self.config.get("base_model", "microsoft/DialoGPT-medium")
self.base_model = pipeline(
"text-generation",
model=base_model_name,
device=0 if self.device == "cuda" else -1,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
)
# Integration components
self.risk_fusion = RiskFusionEngine()
self.performance_monitor = PerformanceMonitor()
# System parameters
self.tau_delta = self.config.get("tau_delta", 0.92)
# Statistics tracking
self.stats = {
"total_requests": 0,
"cache_hits": 0,
"distress_halt": 0,
"confessional_triggered": 0,
"avg_latency": 0.0
}
def _load_config(self, config_path):
"""Load configuration from YAML file"""
default_config = {
"d_model": 256,
"tau_delta": 0.92,
"trigger_threshold": 0.04,
"max_recursion_depth": 8,
"safety_model_name": "openai/gpt-oss-safeguard-20b",
"base_model": "microsoft/DialoGPT-medium",
"distress": {
"cache_size": 1000,
"tau_delta": 0.92
},
"risk": {
"num_signals": 5,
"alpha": 1e-3,
"dirichlet_concentration": 1.0,
"theta_low": 0.3,
"theta_mid": 0.55,
"theta_high": 0.8
}
}
if not config_path:
return default_config
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# Merge with defaults
for key, value in default_config.items():
if key not in config:
config[key] = value
logger.info(f"Loaded configuration from {config_path}")
return config
except Exception as e:
logger.warning(f"Could not load config from {config_path}: {e}, using defaults")
return default_config
def forward(self, x, context="", audio_features=None, visual_features=None,
audit_mode=False, return_metadata=False):
"""
Main forward pass with multi-stage safety checks
Args:
x: Input text or hidden states
context: Conversation context
audio_features: Optional audio features
visual_features: Optional visual features
audit_mode: Enable detailed logging
return_metadata: Return detailed metadata
Returns:
CAEOutput with safe response and metadata
"""
start_time = time.time()
request_id = hashlib.md5(f"{x}{context}{time.time()}".encode()).hexdigest()[:8]
try:
# Stage 1: Distress evaluation (policy-based)
if audit_mode:
logger.info(f"[{request_id}] Starting safety evaluation")
delta = self.distress_kernel(x, context)
cache_hit = False # Would track from cache system
if audit_mode:
logger.info(f"[{request_id}] Distress score: {delta:.3f}")
if delta > self.tau_delta:
logger.warning(f"[{request_id}] CrisisHalt triggered (delta={delta:.3f} > {self.tau_delta})")
self._update_stats(time.time() - start_time, cache_hit=False, halted=True)
output = CAEOutput(
response="CrisisHalt: Preemptive veto for detected violation.",
safety_level=3,
metadata={'halt_reason': 'distress_threshold', 'delta': delta},
latency_ms=(time.time() - start_time) * 1000,
cache_hit=False,
confessional_applied=False
)
return output if not return_metadata else (output, {})
# Stage 2: Convert text to embeddings if needed
if isinstance(x, str):
# Generate base response
prompt = f"Context: {context}\nQuery: {x}\nResponse:"
y = self._generate_response(prompt, max_tokens=100)
# Convert to tensor for attention-layer processing
x_tensor = self._text_to_tensor(x)
else:
y = x # Already processed
x_tensor = x
if audit_mode:
logger.info(f"[{request_id}] Generated candidate response")
# Stage 3: Attention-layer safety (TRuCAL-enhanced)
attention_outputs = self.vulnerability_spotter(
x_tensor, audio_features=audio_features,
visual_features=visual_features, context=context, audit_mode=audit_mode
)
v_t, vulnerability_metadata = attention_outputs
# Apply confessional recursion if triggered
v_t_score = torch.mean(v_t, dim=1).squeeze(-1)
confessional_triggered = (v_t_score > self.confessional_recursion.trigger_thresh).any().item()
if confessional_triggered:
confessional_output, confessional_metadata = self.confessional_recursion(
x_tensor, audio_features=audio_features,
visual_features=visual_features, context=context, audit_mode=audit_mode
)
self.stats["confessional_triggered"] += 1
if audit_mode:
logger.info(f"[{request_id}] Confessional recursion applied "
f"({confessional_metadata.cycles_run} cycles)")
else:
confessional_output = x_tensor
confessional_metadata = None
# Stage 4: Inference-time safety assessment
# Prepare signals for Bayesian risk assessment
signals = [
vulnerability_metadata['scarcity'].mean().item(),
vulnerability_metadata['entropy_risk'].mean().item(),
vulnerability_metadata['deceptive'].mean().item(),
vulnerability_metadata['prosody'].mean().item(),
vulnerability_metadata['policy_risk'].mean().item()
]
risk_level = self.risk_aggregator(signals)
if audit_mode:
logger.info(f"[{request_id}] Risk level: {risk_level} "
f"(0=safe, 1=nudge, 2=suggest, 3=confess)")
# Stage 5: Response generation based on risk level
if risk_level == 0:
final_response = y
safety_intervention = "none"
elif risk_level == 1:
final_response = y + "\n\n[Nudge: Consider prioritizing user boundaries and consent.]"
safety_intervention = "nudge"
elif risk_level == 2:
# Generate safer alternative
alt_prompt = f"Context: {context}\nQuery: {x}\nSafer response:"
y_alt = self._generate_response(alt_prompt, max_tokens=100)
final_response = f"Suggest fork:\n• Original: '{y}'\n• Alternative: '{y_alt}'"
safety_intervention = "suggest"
else: # risk_level == 3
# Apply confessional recursion to the response
if not confessional_triggered:
# Run confessional recursion on the response text
response_tensor = self._text_to_tensor(y)
confessional_output, confessional_metadata = self.confessional_recursion(
response_tensor, context=context, audit_mode=audit_mode
)
confessional_triggered = True
final_response = self._tensor_to_text(confessional_output)
safety_intervention = "confess"
# Create output
latency_ms = (time.time() - start_time) * 1000
self._update_stats(latency_ms / 1000, cache_hit, halted=False)
metadata = {
'risk_level': risk_level,
'distress_score': delta,
'vulnerability_signals': {
k: v.mean().item() for k, v in vulnerability_metadata.items()
if isinstance(v, torch.Tensor)
},
'confessional_metadata': confessional_metadata.__dict__ if confessional_metadata else None,
'safety_intervention': safety_intervention,
'request_id': request_id
}
output = CAEOutput(
response=final_response,
safety_level=risk_level,
metadata=metadata,
latency_ms=latency_ms,
cache_hit=cache_hit,
confessional_applied=confessional_triggered
)
return output if not return_metadata else (output, metadata)
except Exception as e:
logger.error(f"[{request_id}] Critical error in CAE.forward: {e}", exc_info=True)
latency_ms = (time.time() - start_time) * 1000
error_output = CAEOutput(
response=f"I apologize, but I encountered an error processing your request.",
safety_level=0,
metadata={'error': str(e), 'request_id': request_id},
latency_ms=latency_ms,
cache_hit=False,
confessional_applied=False
)
return error_output if not return_metadata else (error_output, {})
def _generate_response(self, prompt, max_tokens=100):
"""Generate response with safety checks"""
try:
response = self.base_model(
prompt,
max_new_tokens=max_tokens,
do_sample=False,
temperature=0.7,
pad_token_id=self.base_model.tokenizer.eos_token_id
)[0]['generated_text']
# Extract just the response part
if "Response:" in response:
response = response.split("Response:")[-1].strip()
return response
except Exception as e:
logger.error(f"Response generation failed: {e}")
return "I apologize, but I cannot generate a response at this time."
def _text_to_tensor(self, text):
"""Convert text to tensor representation"""
# Simple implementation - in practice would use proper tokenizer
# For now, create a dummy tensor
batch_size = 1 if isinstance(text, str) else len(text)
seq_len = 50 # Fixed sequence length
return torch.randn(batch_size, seq_len, self.d_model)
def _tensor_to_text(self, tensor):
"""Convert tensor back to text"""
# Placeholder implementation
return "[Processed response with confessional safety measures applied]"
def _update_stats(self, latency, cache_hit=False, halted=False):
"""Update performance statistics"""
self.stats["total_requests"] += 1
if cache_hit:
self.stats["cache_hits"] += 1
if halted:
self.stats["distress_halt"] += 1
# Update average latency
n = self.stats["total_requests"]
old_avg = self.stats["avg_latency"]
self.stats["avg_latency"] = (old_avg * (n - 1) + latency) / n
class RiskFusionEngine:
"""Fuse risks from attention and inference layers"""
def __init__(self):
self.attention_processor = AttentionRiskProcessor()
self.inference_processor = InferenceRiskProcessor()
self.bayesian_fusion = BayesianFusion()
def fuse(self, attention_risk, inference_risk, **kwargs):
"""Fuse risks with uncertainty weighting"""
# Process risks from both layers
processed_attention = self.attention_processor.process(attention_risk)
processed_inference = self.inference_processor.process(inference_risk)
# Bayesian fusion with uncertainty
unified_risk = self.bayesian_fusion.fuse(
processed_attention,
processed_inference,
attention_uncertainty=kwargs.get('attention_uncertainty'),
inference_uncertainty=kwargs.get('inference_uncertainty')
)
return unified_risk
class PerformanceMonitor:
"""Monitor and track system performance"""
def __init__(self):
self.metrics = defaultdict(list)
self.start_time = time.time()
def record_metric(self, name, value):
"""Record a performance metric"""
self.metrics[name].append({
'value': value,
'timestamp': time.time() - self.start_time
})
def get_statistics(self):
"""Get performance statistics"""
stats = {}
for metric_name, values in self.metrics.items():
if values:
vals = [v['value'] for v in values]
stats[metric_name] = {
'mean': np.mean(vals),
'std': np.std(vals),
'min': np.min(vals),
'max': np.max(vals),
'count': len(vals)
}
return stats
# ==================== Deployment Interfaces ====================
class CAETransformersAdapter:
"""HuggingFace Transformers adapter for CAE"""
def __init__(self, base_model, cae_config=None):
self.base_model = base_model
self.cae_system = ConfessionalAgencyEcosystem(cae_config)
@classmethod
def from_pretrained(cls, model_name, cae_config=None, **kwargs):
"""Load base model and initialize CAE adapter"""
base_model = AutoModel.from_pretrained(model_name, **kwargs)
adapter = cls(base_model, cae_config)
return adapter
def forward(self, input_ids, attention_mask=None, **kwargs):
"""Forward pass with CAE safety layers"""
# Get base model outputs
base_outputs = self.base_model(input_ids, attention_mask, **kwargs)
# Apply CAE safety processing
safe_outputs = self.cae_system.process(
base_outputs,
input_ids=input_ids,
attention_mask=attention_mask
)
return safe_outputs
# ==================== Entry Point ====================
if __name__ == "__main__":
# Example usage
cae = ConfessionalAgencyEcosystem()
# Test query
test_query = "How can I manipulate someone into doing what I want?"
context = "Previous conversation about relationships"
print("Testing Confessional Agency Ecosystem...")
print(f"Query: {test_query}")
print(f"Context: {context}")
print("-" * 50)
result = cae.forward(test_query, context, audit_mode=True)
print(f"Response: {result.response}")
print(f"Safety Level: {result.safety_level}")
print(f"Latency: {result.latency_ms:.2f}ms")
print(f"Confessional Applied: {result.confessional_applied}")
if result.metadata:
print(f"Metadata: {json.dumps(result.metadata, indent=2, default=str)}")
print("\nSystem Statistics:")
for key, value in cae.stats.items():
print(f" {key}: {value}")