Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,19 @@ import numpy as np
|
|
3 |
import random
|
4 |
import torch
|
5 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
dtype = torch.float16
|
9 |
|
10 |
-
repo = "
|
11 |
-
transformer_repo= "diffusers-internal-dev/pm-revamp"
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(repo, transformer=transformer, torch_dtype=torch.float16).to(device)
|
16 |
-
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=3.0)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1344
|
20 |
|
|
|
21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
22 |
|
23 |
if randomize_seed:
|
|
|
3 |
import random
|
4 |
import torch
|
5 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
6 |
+
import spaces
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
dtype = torch.float16
|
10 |
|
11 |
+
repo = "stabilityai/stable-diffusion-3-medium"
|
|
|
12 |
|
13 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
|
|
|
|
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 1344
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
20 |
|
21 |
if randomize_seed:
|