real-depth / app.py
jiuface's picture
upload img to s3
91d2029
raw
history blame
6.64 kB
import spaces
import gradio as gr
import numpy as np
import random
from PIL import Image
import torch
from diffusers import (
ControlNetModel,
DiffusionPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetPipeline,
UniPCMultistepScheduler,
EulerDiscreteScheduler,
AutoencoderKL
)
from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
from transformers import CLIPImageProcessor
from diffusers.utils import load_image
from gradio_imageslider import ImageSlider
import boto3
from io import BytesIO
device = "cuda"
base_model_id = "SG161222/RealVisXL_V4.0"
controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
if torch.cuda.is_available():
# load pipe
controlnet = ControlNetModel.from_pretrained(
controlnet_model_id,
# variant="fp16",
use_safetensors=True,
torch_dtype=torch.float32
)
# vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
# vae=vae,
# variant="fp16",
use_safetensors=True,
torch_dtype=torch.float32,
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_depth_map(image):
original_size = (image.size[1], image.size[0])
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=original_size,
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def upload_to_s3(image, region, access_key, secret_key, bucket_name):
s3 = boto3.client(
's3',
region_name=region,
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
image_key = f"generated_images/{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_key)
return image_key
@spaces.GPU(enable_queue=True)
def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed, upload_to_s3, region, access_key, secret_key, progress=gr.Progress()):
if image_url:
orginal_image = load_image(image_url)
else:
orginal_image = Image.fromarray(image)
size = (orginal_image.size[0], orginal_image.size[1])
print(size)
depth_image = get_depth_map(orginal_image)
generator = torch.Generator().manual_seed(seed)
generated_image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
width=size[0],
height=size[1],
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
strength=control_strength,
generator=generator,
image=depth_image
).images[0]
if upload_to_s3:
url = upload_to_s3(generated_image, region, access_key, secret_key, bucket)
result = {"status": "success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
return [[depth_image, generated_image], json.dumps(result)]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
image_url = gr.Textbox(label="Image Url", placeholder="Enter image URL here (optional)")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=True):
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=30, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
upload_to_s3 = gr.Checkbox(label="Upload to S3", value=False)
region = gr.Textbox(label="S3 Region", placeholder="Enter S3 region here")
access_key = gr.Textbox(label="Access Key", placeholder="Enter S3 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter S3 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter S3 bucket name here")
with gr.Column():
result = ImageSlider(label="Generate image", type="pil", slider_color="pink")
logs = gr.Textbox(label="logs")
inputs = [
image,
image_url,
prompt,
n_prompt,
num_steps,
guidance_scale,
control_strength,
seed,
upload_to_s3,
region,
access_key,
secret_key,
bucket
]
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=[result, logs],
api_name=False
)
demo.queue().launch()