Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
# 加载模型 | |
MODEL_REPO = "jinv2/ai-job-navigator-model" | |
base_model = AutoModelForCausalLM.from_pretrained("distilgpt2") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO) | |
model = PeftModel.from_pretrained(base_model, MODEL_REPO) | |
# 定义生成函数 | |
def generate_advice(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
**inputs, | |
max_length=200, | |
do_sample=True, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.9, | |
num_return_sequences=1 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# 创建 Gradio 界面 | |
interface = gr.Interface( | |
fn=generate_advice, | |
inputs=gr.Textbox(label="输入提示", placeholder="根据最新的AI行业趋势,提供2025年的职业建议:"), | |
outputs=gr.Textbox(label="生成结果"), | |
title="AI Job Navigator 2025", | |
description="输入提示以获取 2025 年 AI 行业的职业建议(基于微调的 distilgpt2 模型)。注意:由于训练数据有限,生成结果可能不理想。" | |
) | |
interface.launch() | |