import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # 加载模型 MODEL_REPO = "jinv2/ai-job-navigator-model" base_model = AutoModelForCausalLM.from_pretrained("distilgpt2") tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO) model = PeftModel.from_pretrained(base_model, MODEL_REPO) # 定义生成函数 def generate_advice(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_length=200, do_sample=True, temperature=0.7, top_k=50, top_p=0.9, num_return_sequences=1 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # 创建 Gradio 界面 interface = gr.Interface( fn=generate_advice, inputs=gr.Textbox(label="输入提示", placeholder="根据最新的AI行业趋势,提供2025年的职业建议:"), outputs=gr.Textbox(label="生成结果"), title="AI Job Navigator 2025", description="输入提示以获取 2025 年 AI 行业的职业建议(基于微调的 distilgpt2 模型)。注意:由于训练数据有限,生成结果可能不理想。" ) interface.launch()