jingwora's picture
Add application file
130febd
from transformers import pipeline
import gradio as gr
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
classifier = pipeline("text-classification")
def speech_to_text(mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
text = asr(audio)["text"]
return text
def text_to_sentiment(text):
return classifier(text)[0]["label"]
title = "Speech-Text-Sentiment"
description = """
Task: Speech to Text to Sentiment\n
Model: \n
speech to text (Wav2Vec2ForCTC)\n
text to sentiment (DistilBertForSequenceClassification)\n
"""
theme="freddyaboulton/dracula_revamped"
demo = gr.Blocks(
title=title,
description=description,
theme=theme
)
with demo:
audio_file = [
gr.Audio(source="microphone",
type="filepath",
optional=True),
gr.Audio(source="upload",
type="filepath",
optional=True),
]
text = gr.Textbox()
label = gr.Label()
b1 = gr.Button("Recognize Speech")
b2 = gr.Button("Classify Sentiment")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
b2.click(text_to_sentiment, inputs=text, outputs=label)
demo.launch()