jingwora commited on
Commit
130febd
·
1 Parent(s): c103d2e

Add application file

Browse files
Files changed (2) hide show
  1. app.py +56 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import pipeline
3
+
4
+ import gradio as gr
5
+
6
+ asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
7
+ classifier = pipeline("text-classification")
8
+
9
+ def speech_to_text(mic=None, file=None):
10
+ if mic is not None:
11
+ audio = mic
12
+ elif file is not None:
13
+ audio = file
14
+ else:
15
+ return "You must either provide a mic recording or a file"
16
+ text = asr(audio)["text"]
17
+ return text
18
+
19
+
20
+ def text_to_sentiment(text):
21
+ return classifier(text)[0]["label"]
22
+
23
+ title = "Speech-Text-Sentiment"
24
+ description = """
25
+ Task: Speech to Text to Sentiment\n
26
+ Model: \n
27
+ speech to text (Wav2Vec2ForCTC)\n
28
+ text to sentiment (DistilBertForSequenceClassification)\n
29
+ """
30
+ theme="freddyaboulton/dracula_revamped"
31
+
32
+ demo = gr.Blocks(
33
+ title=title,
34
+ description=description,
35
+ theme=theme
36
+ )
37
+
38
+ with demo:
39
+ audio_file = [
40
+ gr.Audio(source="microphone",
41
+ type="filepath",
42
+ optional=True),
43
+ gr.Audio(source="upload",
44
+ type="filepath",
45
+ optional=True),
46
+ ]
47
+ text = gr.Textbox()
48
+ label = gr.Label()
49
+
50
+ b1 = gr.Button("Recognize Speech")
51
+ b2 = gr.Button("Classify Sentiment")
52
+
53
+ b1.click(speech_to_text, inputs=audio_file, outputs=text)
54
+ b2.click(text_to_sentiment, inputs=text, outputs=label)
55
+
56
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==3.36.1
2
+ transformers==4.30.2
3
+ torch==2.0.1