Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BERT model.""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import copy | |
import json | |
import logging | |
import math | |
import os | |
import shutil | |
import tarfile | |
import tempfile | |
import sys | |
from io import open | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from .file_utils import cached_path | |
logger = logging.getLogger(__name__) | |
PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", | |
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", | |
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", | |
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", | |
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", | |
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", | |
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", | |
} | |
CONFIG_NAME = 'bert_config.json' | |
WEIGHTS_NAME = 'pytorch_model.bin' | |
TF_WEIGHTS_NAME = 'model.ckpt' | |
def load_tf_weights_in_bert(model, tf_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model | |
""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions.") | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
print("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
print("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split('/') | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any(n in ["adam_v", "adam_m"] for n in name): | |
print("Skipping {}".format("/".join(name))) | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+_\d+', m_name): | |
l = re.split(r'_(\d+)', m_name) | |
else: | |
l = [m_name] | |
if l[0] == 'kernel' or l[0] == 'gamma': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'output_bias' or l[0] == 'beta': | |
pointer = getattr(pointer, 'bias') | |
elif l[0] == 'output_weights': | |
pointer = getattr(pointer, 'weight') | |
else: | |
pointer = getattr(pointer, l[0]) | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == '_embeddings': | |
pointer = getattr(pointer, 'weight') | |
elif m_name == 'kernel': | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
print("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
class BertConfig(object): | |
"""Configuration class to store the configuration of a `BertModel`. | |
""" | |
def __init__(self, | |
vocab_size_or_config_json_file, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02): | |
"""Constructs BertConfig. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. | |
hidden_size: Size of the encoder layers and the pooler layer. | |
num_hidden_layers: Number of hidden layers in the Transformer encoder. | |
num_attention_heads: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
intermediate_size: The size of the "intermediate" (i.e., feed-forward) | |
layer in the Transformer encoder. | |
hidden_act: The non-linear activation function (function or string) in the | |
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. | |
hidden_dropout_prob: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob: The dropout ratio for the attention | |
probabilities. | |
max_position_embeddings: The maximum sequence length that this model might | |
ever be used with. Typically set this to something large just in case | |
(e.g., 512 or 1024 or 2048). | |
type_vocab_size: The vocabulary size of the `token_type_ids` passed into | |
`BertModel`. | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
""" | |
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 | |
and isinstance(vocab_size_or_config_json_file, unicode)): | |
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
else: | |
raise ValueError("First argument must be either a vocabulary size (int)" | |
"or the path to a pretrained model config file (str)") | |
def from_dict(cls, json_object): | |
"""Constructs a `BertConfig` from a Python dictionary of parameters.""" | |
config = BertConfig(vocab_size_or_config_json_file=-1) | |
for key, value in json_object.items(): | |
config.__dict__[key] = value | |
return config | |
def from_json_file(cls, json_file): | |
"""Constructs a `BertConfig` from a json file of parameters.""" | |
with open(json_file, "r", encoding='utf-8') as reader: | |
text = reader.read() | |
return cls.from_dict(json.loads(text)) | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
try: | |
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm | |
except ImportError: | |
print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") | |
class BertLayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-12): | |
"""Construct a layernorm module in the TF style (epsilon inside the square root). | |
""" | |
super(BertLayerNorm, self).__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
return self.weight * x + self.bias | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super(BertEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None): | |
seq_length = input_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
words_embeddings = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = words_embeddings + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertSelfAttention(nn.Module): | |
def __init__(self, config): | |
super(BertSelfAttention, self).__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, attention_mask): | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super(BertSelfOutput, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertAttention(nn.Module): | |
def __init__(self, config): | |
super(BertAttention, self).__init__() | |
self.self = BertSelfAttention(config) | |
self.output = BertSelfOutput(config) | |
def forward(self, input_tensor, attention_mask): | |
self_output = self.self(input_tensor, attention_mask) | |
attention_output = self.output(self_output, input_tensor) | |
return attention_output | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super(BertIntermediate, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super(BertOutput, self).__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertLayer(nn.Module): | |
def __init__(self, config): | |
super(BertLayer, self).__init__() | |
self.attention = BertAttention(config) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, hidden_states, attention_mask): | |
attention_output = self.attention(hidden_states, attention_mask) | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class BertEncoder(nn.Module): | |
def __init__(self, config): | |
super(BertEncoder, self).__init__() | |
layer = BertLayer(config) | |
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) | |
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): | |
all_encoder_layers = [] | |
for layer_module in self.layer: | |
hidden_states = layer_module(hidden_states, attention_mask) | |
if output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
if not output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
return all_encoder_layers | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super(BertPooler, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super(BertPredictionHeadTransform, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(BertLMPredictionHead, self).__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), | |
bert_model_embedding_weights.size(0), | |
bias=False) | |
self.decoder.weight = bert_model_embedding_weights | |
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class BertOnlyMLMHead(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(BertOnlyMLMHead, self).__init__() | |
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class BertOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super(BertOnlyNSPHead, self).__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(BertPreTrainingHeads, self).__init__() | |
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(nn.Module): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
def __init__(self, config, *inputs, **kwargs): | |
super(BertPreTrainedModel, self).__init__() | |
if not isinstance(config, BertConfig): | |
raise ValueError( | |
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. " | |
"To create a model from a Google pretrained model use " | |
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
self.__class__.__name__, self.__class__.__name__ | |
)) | |
self.config = config | |
def init_bert_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, BertLayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, | |
from_tf=False, *inputs, **kwargs): | |
""" | |
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. | |
Download and cache the pre-trained model file if needed. | |
Params: | |
pretrained_model_name_or_path: either: | |
- a str with the name of a pre-trained model to load selected in the list of: | |
. `bert-base-uncased` | |
. `bert-large-uncased` | |
. `bert-base-cased` | |
. `bert-large-cased` | |
. `bert-base-multilingual-uncased` | |
. `bert-base-multilingual-cased` | |
. `bert-base-chinese` | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. `model.chkpt` a TensorFlow checkpoint | |
from_tf: should we load the weights from a locally saved TensorFlow checkpoint | |
cache_dir: an optional path to a folder in which the pre-trained models will be cached. | |
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models | |
*inputs, **kwargs: additional input for the specific Bert class | |
(ex: num_labels for BertForSequenceClassification) | |
""" | |
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: | |
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] | |
else: | |
archive_file = pretrained_model_name_or_path | |
# redirect to the cache, if necessary | |
try: | |
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) | |
except EnvironmentError: | |
logger.error( | |
"Model name '{}' was not found in model name list ({}). " | |
"We assumed '{}' was a path or url but couldn't find any file " | |
"associated to this path or url.".format( | |
pretrained_model_name_or_path, | |
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), | |
archive_file)) | |
return None | |
if resolved_archive_file == archive_file: | |
logger.info("loading archive file {}".format(archive_file)) | |
else: | |
logger.info("loading archive file {} from cache at {}".format( | |
archive_file, resolved_archive_file)) | |
tempdir = None | |
if os.path.isdir(resolved_archive_file) or from_tf: | |
serialization_dir = resolved_archive_file | |
else: | |
# Extract archive to temp dir | |
tempdir = tempfile.mkdtemp() | |
logger.info("extracting archive file {} to temp dir {}".format( | |
resolved_archive_file, tempdir)) | |
with tarfile.open(resolved_archive_file, 'r:gz') as archive: | |
archive.extractall(tempdir) | |
serialization_dir = tempdir | |
# Load config | |
config_file = os.path.join(serialization_dir, CONFIG_NAME) | |
config = BertConfig.from_json_file(config_file) | |
logger.info("Model config {}".format(config)) | |
# Instantiate model. | |
model = cls(config, *inputs, **kwargs) | |
if state_dict is None and not from_tf: | |
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) | |
state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None) | |
if tempdir: | |
# Clean up temp dir | |
shutil.rmtree(tempdir) | |
if from_tf: | |
# Directly load from a TensorFlow checkpoint | |
weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME) | |
return load_tf_weights_in_bert(model, weights_path) | |
# Load from a PyTorch state_dict | |
old_keys = [] | |
new_keys = [] | |
for key in state_dict.keys(): | |
new_key = None | |
if 'gamma' in key: | |
new_key = key.replace('gamma', 'weight') | |
if 'beta' in key: | |
new_key = key.replace('beta', 'bias') | |
if new_key: | |
old_keys.append(key) | |
new_keys.append(new_key) | |
for old_key, new_key in zip(old_keys, new_keys): | |
state_dict[new_key] = state_dict.pop(old_key) | |
missing_keys = [] | |
unexpected_keys = [] | |
error_msgs = [] | |
# copy state_dict so _load_from_state_dict can modify it | |
metadata = getattr(state_dict, '_metadata', None) | |
state_dict = state_dict.copy() | |
if metadata is not None: | |
state_dict._metadata = metadata | |
def load(module, prefix=''): | |
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
module._load_from_state_dict( | |
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + '.') | |
start_prefix = '' | |
if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): | |
start_prefix = 'bert.' | |
load(model, prefix=start_prefix) | |
if len(missing_keys) > 0: | |
logger.info("Weights of {} not initialized from pretrained model: {}".format( | |
model.__class__.__name__, missing_keys)) | |
if len(unexpected_keys) > 0: | |
logger.info("Weights from pretrained model not used in {}: {}".format( | |
model.__class__.__name__, unexpected_keys)) | |
if len(error_msgs) > 0: | |
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( | |
model.__class__.__name__, "\n\t".join(error_msgs))) | |
return model | |
class BertModel(BertPreTrainedModel): | |
"""BERT model ("Bidirectional Embedding Representations from a Transformer"). | |
Params: | |
config: a BertConfig class instance with the configuration to build a new model | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts | |
`extract_features.py`, `run_classifier.py` and `run_squad.py`) | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. | |
Outputs: Tuple of (encoded_layers, pooled_output) | |
`encoded_layers`: controled by `output_all_encoded_layers` argument: | |
- `output_all_encoded_layers=True`: output a list of the full sequences of encoded-hidden-states at the end | |
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each | |
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], | |
- `output_all_encoded_layers=False`: output only the full sequence of hidden-states corresponding | |
to the last attention block of shape [batch_size, sequence_length, hidden_size], | |
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a | |
classifier pretrained on top of the hidden state associated to the first character of the | |
input (`CLS`) to train on the Next-Sentence task (see BERT's paper). | |
Example usage: | |
```python | |
# Already been converted into WordPiece token ids | |
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) | |
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) | |
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) | |
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, | |
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) | |
model = modeling.BertModel(config=config) | |
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) | |
``` | |
""" | |
def __init__(self, config): | |
super(BertModel, self).__init__(config) | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) | |
self.apply(self.init_bert_weights) | |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
embedding_output = self.embeddings(input_ids, token_type_ids) | |
encoded_layers = self.encoder(embedding_output, | |
extended_attention_mask, | |
output_all_encoded_layers=output_all_encoded_layers) | |
sequence_output = encoded_layers[-1] | |
pooled_output = self.pooler(sequence_output) | |
if not output_all_encoded_layers: | |
encoded_layers = encoded_layers[-1] | |
return encoded_layers, pooled_output | |
class BertForSequenceEncoder(BertPreTrainedModel): | |
"""BERT model for classification. | |
This module is composed of the BERT model with a linear layer on top of | |
the pooled output. | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model. | |
`num_labels`: the number of classes for the classifier. Default = 2. | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts | |
`extract_features.py`, `run_classifier.py` and `run_squad.py`) | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size] | |
with indices selected in [0, ..., num_labels]. | |
Outputs: | |
if `labels` is not `None`: | |
Outputs the CrossEntropy classification loss of the output with the labels. | |
if `labels` is `None`: | |
Outputs the classification logits of shape [batch_size, num_labels]. | |
Example usage: | |
```python | |
# Already been converted into WordPiece token ids | |
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) | |
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) | |
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) | |
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, | |
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) | |
num_labels = 2 | |
model = BertForSequenceClassification(config, num_labels) | |
logits = model(input_ids, token_type_ids, input_mask) | |
``` | |
""" | |
def __init__(self, config): | |
super(BertForSequenceEncoder, self).__init__(config) | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.apply(self.init_bert_weights) | |
def forward(self, input_ids, attention_mask, token_type_ids): | |
output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) | |
output = self.dropout(output) | |
pooled_output = self.dropout(pooled_output) | |
return output, pooled_output | |