Auction-Arena-Demo / auction_workflow.py
jiangjiechen's picture
init app
8acb22e
raw
history blame
13.5 kB
import os
import time
import gradio as gr
import ujson as json
import traceback
from typing import List
from tqdm import tqdm
from src.auctioneer_base import Auctioneer
from src.bidder_base import Bidder, bidders_to_chatbots, bidding_multithread
from utils import trace_back
LOG_DIR = 'logs'
enable_gr = gr.update(interactive=True)
disable_gr = gr.update(interactive=False)
def monitor_all(bidder_list: List[Bidder]):
return sum([bidder.to_monitors() for bidder in bidder_list], [])
def parse_bid_price(auctioneer: Auctioneer, bidder: Bidder, msg: str):
# rebid if the message is not parsible into a bid price
bid_price = auctioneer.parse_bid(msg)
while bid_price is None:
re_msg = bidder.bid("You must be clear about your bidding decision, say either \"I'm out!\" or \"I bid $xxx!\". Please rebid.")
bid_price = auctioneer.parse_bid(re_msg)
print(f"{bidder.name} rebid: {re_msg}")
return bid_price
def enable_human_box(bidder_list):
signals = []
for bidder in bidder_list:
if 'human' in bidder.model_name and not bidder.withdraw:
signals.append(gr.update(interactive=True, visible=True,
placeholder="Please bid! Enter \"I'm out\" or \"I bid $xxx\"."))
else:
signals.append(disable_gr)
return signals
def disable_all_box(bidder_list):
signals = []
for bidder in bidder_list:
if 'human' in bidder.model_name:
signals.append(gr.update(interactive=False, visible=True,
placeholder="Wait a moment to engage in the auction."))
else:
signals.append(gr.update(interactive=False, visible=False))
return signals
def run_auction(
auction_hash: str,
auctioneer: Auctioneer,
bidder_list: List[Bidder],
thread_num: int,
yield_for_demo=True,
log_dir=LOG_DIR,
repeat_num=0,
memo_file=None):
# bidder_list[0].verbose=True
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
# ***************** Learn Round ****************
for bidder in bidder_list:
if bidder.enable_learning and memo_file:
# if no prev memo file, then no need to learn.
if os.path.exists(memo_file):
with open(memo_file) as f:
data = json.load(f)
past_learnings = data['learnings'][bidder.name]
past_auction_log = data['auction_log']
bidder.learn_from_prev_auction(past_learnings, past_auction_log)
# ***************** Plan Round *****************
# init bidder profit
bidder_profit_info = auctioneer.gather_all_status(bidder_list)
for bidder in bidder_list:
bidder.set_all_bidders_status(bidder_profit_info)
plan_instructs = [bidder.get_plan_instruct(auctioneer.items) for bidder in bidder_list]
bidding_multithread(bidder_list, plan_instructs, func_type='plan', thread_num=thread_num)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
bar = tqdm(total=len(auctioneer.items_queue), desc='Auction Progress')
while not auctioneer.end_auction():
cur_item = auctioneer.present_item()
bid_round = 0
while True:
# ***************** Bid Round *****************
auctioneer_msg = auctioneer.ask_for_bid(bid_round)
_bidder_list = []
_bid_instruct_list = []
# remove highest bidder and withdrawn bidders
for bidder in bidder_list:
if bidder is auctioneer.highest_bidder or bidder.withdraw:
bidder.need_input = False
continue
else:
bidder.need_input = True # enable input from demo
instruct = bidder.get_bid_instruct(auctioneer_msg, bid_round)
_bidder_list.append(bidder)
_bid_instruct_list.append(instruct)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + enable_human_box(bidder_list)
_msgs = bidding_multithread(_bidder_list, _bid_instruct_list, func_type='bid', thread_num=thread_num)
for i, (msg, bidder) in enumerate(zip(_msgs, _bidder_list)):
if bidder.model_name == 'rule':
bid_price = bidder.bid_rule(auctioneer.prev_round_max_bid, auctioneer.min_markup_pct)
else:
bid_price = parse_bid_price(auctioneer, bidder, msg)
# can't bid more than budget or less than previous highest bid
while True:
fail_msg = bidder.bid_sanity_check(bid_price, auctioneer.prev_round_max_bid, auctioneer.min_markup_pct)
if fail_msg is None:
break
else:
bidder.need_input = True # enable input from demo
auctioneer_msg = auctioneer.ask_for_rebid(fail_msg=fail_msg, bid_price=bid_price)
rebid_instruct = bidder.get_rebid_instruct(auctioneer_msg)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
msg = bidder.rebid_for_failure(rebid_instruct)
bid_price = parse_bid_price(auctioneer, bidder, msg)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
bidder.set_withdraw(bid_price)
auctioneer.record_bid({'bidder': bidder, 'bid': bid_price, 'raw_msg': msg}, bid_round)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
is_sold = auctioneer.check_hammer(bid_round)
bid_round += 1
if is_sold:
break
else:
if auctioneer.fail_to_sell and auctioneer.enable_discount:
for bidder in bidder_list:
bidder.set_withdraw(0) # back in the game
# ***************** Summarize *****************
summarize_instruct_list = []
for bidder in bidder_list:
if bidder is auctioneer.highest_bidder:
win_lose_msg = bidder.win_bid(cur_item, auctioneer.highest_bid)
else:
win_lose_msg = bidder.lose_bid(cur_item)
msg = bidder.get_summarize_instruct(
bidding_history=auctioneer.all_bidding_history_to_string(),
hammer_msg=auctioneer.get_hammer_msg(),
win_lose_msg=win_lose_msg
)
summarize_instruct_list.append(msg)
# record profit information of all bidders for each bidder
# (not used in the auction, just for belief tracking evaluation)
bidder_profit_info = auctioneer.gather_all_status(bidder_list)
for bidder in bidder_list:
bidder.set_all_bidders_status(bidder_profit_info)
bidding_multithread(bidder_list, summarize_instruct_list, func_type='summarize', thread_num=thread_num)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
# ***************** Replan *****************
if len(auctioneer.items_queue) > 0: # no need to replan if all items are sold
replan_instruct_list = [bidder.get_replan_instruct(
# bidding_history=auctioneer.all_bidding_history_to_string(),
# hammer_msg=auctioneer.get_hammer_msg()
) for bidder in bidder_list]
bidding_multithread(bidder_list, replan_instruct_list, func_type='replan', thread_num=thread_num)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
auctioneer.hammer_fall()
bar.update(1)
total_cost = sum([b.openai_cost for b in bidder_list]) + auctioneer.openai_cost
bidder_reports = [bidder.profit_report() for bidder in bidder_list]
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list, profit_report=True)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log(bidder_reports) + f'\n## Total Cost: ${total_cost}'] + [disable_gr, enable_gr] + disable_all_box(bidder_list)
memo = {'auction_log': auctioneer.log(show_model_name=False),
'memo_text': bidder_reports,
'profit': {bidder.name: bidder.profit for bidder in bidder_list},
'total_cost': total_cost,
'learnings': {bidder.name: bidder.learnings for bidder in bidder_list},
'model_info': {bidder.name: bidder.model_name for bidder in bidder_list}}
log_bidders(log_dir, auction_hash, bidder_list, repeat_num, memo)
auctioneer.finish_auction()
if not yield_for_demo:
yield total_cost
def log_bidders(log_dir: str, auction_hash: str, bidder_list: List[Bidder], repeat_num: int, memo: dict):
for bidder in bidder_list:
log_file = f"{log_dir}/{auction_hash}/{bidder.name.replace(' ', '')}-{repeat_num}.jsonl"
if not os.path.exists(log_file):
os.makedirs(os.path.dirname(log_file), exist_ok=True)
with open(log_file, 'a') as f:
log_data = bidder.to_monitors(as_json=True)
f.write(json.dumps(log_data) + '\n')
with open(f"{log_dir}/{auction_hash}/memo-{repeat_num}.json", 'w') as f:
f.write(json.dumps(memo) + '\n')
def make_auction_hash():
return str(int(time.time()))
if __name__ == '__main__':
import argparse
from src.item_base import create_items
from src.bidder_base import create_bidders
from transformers import GPT2TokenizerFast
import cjjpy as cjj
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', '-i', type=str, default='data/exp_base/')
parser.add_argument('--shuffle', action='store_true')
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--threads', '-t', type=int, help='Number of threads. Max is number of bidders. Reduce it if rate limit is low (e.g., GPT-4).', required=True)
parser.add_argument('--memo_file', '-m', type=str, help='The last memo.json file to be loaded for learning. Only useful when the repeated auctions are interrupted (i.e., auction hash is different).')
args = parser.parse_args()
auction_hash = make_auction_hash()
total_money_spent = 0
for i in tqdm(range(args.repeat), desc='Repeat'):
cnt = 3
while cnt > 0:
try:
item_file = os.path.join(args.input_dir, f'items_demo.jsonl')
bidder_file = os.path.join(args.input_dir, f'bidders_demo.jsonl')
memo_file = args.memo_file if args.memo_file else f'{args.input_dir}/{auction_hash}/memo-{i-1}.json' # past memo for learning
items = create_items(item_file)
bidders = create_bidders(bidder_file, auction_hash=auction_hash)
auctioneer = Auctioneer(enable_discount=False)
auctioneer.init_items(items)
if args.shuffle:
auctioneer.shuffle_items()
money_spent = list(run_auction(
auction_hash,
auctioneer,
bidders,
thread_num=min(args.threads, len(bidders)),
yield_for_demo=False,
log_dir=args.input_dir,
repeat_num=i,
memo_file=memo_file,
))
total_money_spent += sum(money_spent)
break
except Exception as e:
cnt -= 1
print(f"Error in {i}th auction: {e}\n{trace_back(e)}")
print(f"Retry {cnt} more times...")
print('Total money spent: $', total_money_spent)
cjj.SendEmail(f'Completed: {args.input_dir} - {auction_hash}', f'Total money spent: ${total_money_spent}')