Spaces:
Paused
Paused
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Generic utilities | |
""" | |
from collections import OrderedDict | |
from dataclasses import fields, is_dataclass | |
from typing import Any, Tuple | |
import numpy as np | |
from .import_utils import is_torch_available | |
def is_tensor(x) -> bool: | |
""" | |
Tests if `x` is a `torch.Tensor` or `np.ndarray`. | |
""" | |
if is_torch_available(): | |
import torch | |
if isinstance(x, torch.Tensor): | |
return True | |
return isinstance(x, np.ndarray) | |
class BaseOutput(OrderedDict): | |
""" | |
Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a | |
tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular | |
Python dictionary. | |
<Tip warning={true}> | |
You can't unpack a [`BaseOutput`] directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple | |
first. | |
</Tip> | |
""" | |
def __init_subclass__(cls) -> None: | |
"""Register subclasses as pytree nodes. | |
This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with | |
`static_graph=True` with modules that output `ModelOutput` subclasses. | |
""" | |
if is_torch_available(): | |
import torch.utils._pytree | |
torch.utils._pytree._register_pytree_node( | |
cls, | |
torch.utils._pytree._dict_flatten, | |
lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)), | |
) | |
def __post_init__(self) -> None: | |
class_fields = fields(self) | |
# Safety and consistency checks | |
if not len(class_fields): | |
raise ValueError(f"{self.__class__.__name__} has no fields.") | |
first_field = getattr(self, class_fields[0].name) | |
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) | |
if other_fields_are_none and isinstance(first_field, dict): | |
for key, value in first_field.items(): | |
self[key] = value | |
else: | |
for field in class_fields: | |
v = getattr(self, field.name) | |
if v is not None: | |
self[field.name] = v | |
def __delitem__(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") | |
def setdefault(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") | |
def pop(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") | |
def update(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") | |
def __getitem__(self, k: Any) -> Any: | |
if isinstance(k, str): | |
inner_dict = dict(self.items()) | |
return inner_dict[k] | |
else: | |
return self.to_tuple()[k] | |
def __setattr__(self, name: Any, value: Any) -> None: | |
if name in self.keys() and value is not None: | |
# Don't call self.__setitem__ to avoid recursion errors | |
super().__setitem__(name, value) | |
super().__setattr__(name, value) | |
def __setitem__(self, key, value): | |
# Will raise a KeyException if needed | |
super().__setitem__(key, value) | |
# Don't call self.__setattr__ to avoid recursion errors | |
super().__setattr__(key, value) | |
def __reduce__(self): | |
if not is_dataclass(self): | |
return super().__reduce__() | |
callable, _args, *remaining = super().__reduce__() | |
args = tuple(getattr(self, field.name) for field in fields(self)) | |
return callable, args, *remaining | |
def to_tuple(self) -> Tuple[Any, ...]: | |
""" | |
Convert self to a tuple containing all the attributes/keys that are not `None`. | |
""" | |
return tuple(self[k] for k in self.keys()) | |