Whisper-WebUI / README.md
jhj0517
Update README.md
d8c2ba0 unverified
|
raw
history blame
5.68 kB
# Whisper-WebUI
A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper). You can use it as an Easy Subtitle Generator!
![Whisper WebUI](https://github.com/jhj0517/Whsiper-WebUI/blob/master/screenshot.png)
## Notebook
If you wish to try this on Colab, you can do it in [here](https://colab.research.google.com/github/jhj0517/Whisper-WebUI/blob/master/notebook/whisper-webui.ipynb)!
# Feature
- Select the Whisper implementation you want to use between :
- [openai/whisper](https://github.com/openai/whisper)
- [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper) (used by default)
- [Vaibhavs10/insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper)
- Generate subtitles from various sources, including :
- Files
- Youtube
- Microphone
- Currently supported subtitle formats :
- SRT
- WebVTT
- txt ( only text file without timeline )
- Speech to Text Translation
- From other languages to English. ( This is Whisper's end-to-end speech-to-text translation feature )
- Text to Text Translation
- Translate subtitle files using Facebook NLLB models
- Translate subtitle files using DeepL API
- Pre-processing audio input with [Silero VAD](https://github.com/snakers4/silero-vad).
- Post-processing with speaker diarization using the [pyannote](https://huggingface.co/pyannote/speaker-diarization-3.1) model.
- To download the pyannote model, you need to have a Huggingface token and manually accept their terms in the pages below.
1. https://huggingface.co/pyannote/speaker-diarization-3.1
2. https://huggingface.co/pyannote/segmentation-3.0
# Installation and Running
### Prerequisite
To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10, `FFmpeg` and `CUDA` (if you use NVIDIA GPU) version above 12.0
Please follow the links below to install the necessary software:
- git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
- python : [https://www.python.org/downloads/](https://www.python.org/downloads/) **( If your python version is too new, torch will not install properly.)**
- FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
- CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!**
### Automatic Installation
1. Download `Whisper-WebUI.zip` with the file corresponding to your OS from [v1.0.0](https://github.com/jhj0517/Whisper-WebUI/releases/tag/v1.0.0) and extract its contents.
2. Run `install.bat` or `install.sh` to install dependencies. (This will create a `venv` directory and install dependencies there.)
3. Start WebUI with `start-webui.bat` or `start-webui.sh`
4. To update the WebUI, run `update.bat` or `update.sh`
And you can also run the project with command line arguments if you like to, see [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for a guide to arguments.
- ## Running with Docker
1. Build the image
```sh
docker build -t whisper-webui:latest .
```
2. Run the container with commands
- For bash :
```sh
docker run --gpus all -d \
-v /path/to/models:/Whisper-WebUI/models \
-v /path/to/outputs:/Whisper-WebUI/outputs \
-p 7860:7860 \
-it \
whisper-webui:latest --server_name 0.0.0.0 --server_port 7860
```
- For PowerShell:
```shell
docker run --gpus all -d `
-v /path/to/models:/Whisper-WebUI/models `
-v /path/to/outputs:/Whisper-WebUI/outputs `
-p 7860:7860 `
-it `
whisper-webui:latest --server_name 0.0.0.0 --server_port 7860
```
# VRAM Usages
This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.
According to faster-whisper, the efficiency of the optimized whisper model is as follows:
| Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
|-------------------|-----------|-----------|-------|-----------------|-----------------|
| openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
| faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
If you want to use an implementation other than faster-whisper, use `--whisper_type` arg and the repository name.<br>
Read [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for more info about CLI args.
## Available models
This is Whisper's original VRAM usage table for models.
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
| base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
| small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
| medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
| large | 1550 M | N/A | `large` | ~10 GB | 1x |
`.en` models are for English only, and the cool thing is that you can use the `Translate to English` option from the "large" models!
## TODO🗓
- [x] Add DeepL API translation
- [x] Add NLLB Model translation
- [x] Integrate with faster-whisper
- [x] Integrate with insanely-fast-whisper
- [x] Integrate with whisperX ( Only speaker diarization part )
- [ ] Add fast api script
- [ ] Support real-time transcription for microphone