|
import os |
|
import cv2 |
|
from PIL import Image |
|
import numpy as np |
|
import segmentation_models as sm |
|
from matplotlib import pyplot as plt |
|
import random |
|
|
|
from keras import backend as K |
|
from keras.models import load_model |
|
|
|
import gradio as gr |
|
|
|
def jaccard_coef(y_true, y_pred): |
|
y_true_flatten = K.flatten(y_true) |
|
y_pred_flatten = K.flatten(y_pred) |
|
intersection = K.sum(y_true_flatten * y_pred_flatten) |
|
final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0) |
|
return final_coef_value |
|
|
|
weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666] |
|
dice_loss = sm.losses.DiceLoss(class_weights = weights) |
|
focal_loss = sm.losses.CategoricalFocalLoss() |
|
total_loss = dice_loss + (1 * focal_loss) |
|
|
|
|
|
satellite_model = load_model('model/model_checkpoint.h5',custom_objects=({'dice_loss_plus_1focal_loss': total_loss, 'jaccard_coef': jaccard_coef})) |
|
|
|
|
|
def process_input_image(image_source): |
|
image = np.expand_dims(image_source, 0) |
|
|
|
prediction = satellite_model.predict(image) |
|
predicted_image = np.argmax(prediction, axis=3) |
|
|
|
predicted_image = predicted_image[0,:,:] |
|
predicted_image = predicted_image * 50 |
|
return 'Predicted Masked Image', predicted_image |
|
|
|
|
|
my_app = gr.Blocks() |
|
|
|
|
|
with my_app: |
|
gr.Markdown("Statellite Image Segmentation Application UI with Gradio") |
|
with gr.Tabs(): |
|
with gr.TabItem("Select your image"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
img_source = gr.Image(label="Please select source Image", shape=(256, 256)) |
|
source_image_loader = gr.Button("Load above Image") |
|
with gr.Column(): |
|
output_label = gr.Label(label="Image Info") |
|
img_output = gr.Image(label="Image Output") |
|
source_image_loader.click( |
|
process_input_image, |
|
[ |
|
img_source |
|
], |
|
[ |
|
output_label, |
|
img_output |
|
] |
|
) |
|
|
|
|
|
my_app.launch(debug=True) |
|
|
|
|