jgyegyiri2023 commited on
Commit
b9cc85a
·
1 Parent(s): ee7152a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -0
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from PIL import Image
4
+ import numpy as np
5
+ import segmentation_models as sm
6
+ from matplotlib import pyplot as plt
7
+ import random
8
+
9
+ from keras import backend as K
10
+ from keras.models import load_model
11
+
12
+ import gradio as gr
13
+
14
+ def jaccard_coef(y_true, y_pred):
15
+ y_true_flatten = K.flatten(y_true)
16
+ y_pred_flatten = K.flatten(y_pred)
17
+ intersection = K.sum(y_true_flatten * y_pred_flatten)
18
+ final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0)
19
+ return final_coef_value
20
+
21
+ weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666]
22
+ dice_loss = sm.losses.DiceLoss(class_weights = weights)
23
+ focal_loss = sm.losses.CategoricalFocalLoss()
24
+ total_loss = dice_loss + (1 * focal_loss)
25
+
26
+
27
+ satellite_model = load_model('model/model_checkpoint.h5',custom_objects=({'dice_loss_plus_1focal_loss': total_loss, 'jaccard_coef': jaccard_coef}))
28
+
29
+
30
+ def process_input_image(image_source):
31
+ image = np.expand_dims(image_source, 0)
32
+
33
+ prediction = satellite_model.predict(image)
34
+ predicted_image = np.argmax(prediction, axis=3)
35
+
36
+ predicted_image = predicted_image[0,:,:]
37
+ predicted_image = predicted_image * 50
38
+ return 'Predicted Masked Image', predicted_image
39
+
40
+
41
+ my_app = gr.Blocks()
42
+
43
+
44
+ with my_app:
45
+ gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
46
+ with gr.Tabs():
47
+ with gr.TabItem("Select your image"):
48
+ with gr.Row():
49
+ with gr.Column():
50
+ img_source = gr.Image(label="Please select source Image", shape=(256, 256))
51
+ source_image_loader = gr.Button("Load above Image")
52
+ with gr.Column():
53
+ output_label = gr.Label(label="Image Info")
54
+ img_output = gr.Image(label="Image Output")
55
+ source_image_loader.click(
56
+ process_input_image,
57
+ [
58
+ img_source
59
+ ],
60
+ [
61
+ output_label,
62
+ img_output
63
+ ]
64
+ )
65
+
66
+
67
+ my_app.launch(debug=True)
68
+