jeasinema commited on
Commit
a9288bc
1 Parent(s): 80b34df

update gradio

Browse files
Files changed (1) hide show
  1. app.py +71 -136
app.py CHANGED
@@ -1,146 +1,81 @@
 
 
 
1
  import gradio as gr
 
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
 
 
 
 
 
 
 
 
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
1
+ import spaces
2
+ import torch
3
+ from diffusers import StableDiffusion3InstructPix2PixPipeline, SD3Transformer2DModel
4
  import gradio as gr
5
+ import PIL.Image
6
  import numpy as np
7
+ from PIL import Image, ImageOps
8
+
9
+
10
+ pipe = StableDiffusion3InstructPix2PixPipeline.from_pretrained("BleachNick/SD3_UltraEdit_w_mask", torch_dtype=torch.float16)
11
+
12
+ pipe = pipe.to("cuda")
13
+
14
+
15
+
16
+ @spaces.GPU(duration=20)
17
+ def generate(image_mask, prompt, num_inference_steps=50, image_guidance_scale=1.6, guidance_scale=7.5, seed=255):
18
+ def is_blank_mask(mask_img):
19
+ # Convert the mask to a numpy array and check if all values are 0 (black/transparent)
20
+ mask_array = np.array(mask_img.convert('L')) # Convert to luminance to simplify the check
21
+ return np.all(mask_array == 0)
22
+ # Set the seed for reproducibility
23
+ seed = int(seed)
24
+ generator = torch.manual_seed(seed)
25
 
26
+ img = image_mask["background"].convert("RGB")
27
+ mask_img = image_mask["layers"][0].getchannel('A').convert("RGB")
28
 
29
+ # Central crop to desired size
30
+ desired_size = (512, 512)
 
 
 
 
 
 
31
 
32
+ img = ImageOps.fit(img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5))
33
+ mask_img = ImageOps.fit(mask_img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5))
34
 
35
+ if is_blank_mask(mask_img):
36
+ # Create a mask of the same size with all values set to 255 (white)
37
+ mask_img = PIL.Image.new('RGB', img.size, color=(255, 255, 255))
38
+ mask_img = mask_img.convert('RGB')
39
 
 
 
 
 
 
40
  image = pipe(
41
+ prompt,
42
+ image=img,
43
+ mask_img=mask_img,
44
+ num_inference_steps=num_inference_steps,
45
+ image_guidance_scale=image_guidance_scale,
46
+ guidance_scale=guidance_scale,
47
+ generator=generator
48
+ ).images[0]
49
+
50
+ return image,mask_img
51
+
52
+
53
+ # image_mask_input = gr.ImageMask(label="Input Image", type="pil", brush_color="#000000", elem_id="inputmask",
54
+ # shape=(512, 512))
55
+ image_mask_input = gr.ImageMask(sources='upload',type="pil",label="Input Image: Mask with pen or leave unmasked",transforms=(),layers=False)
56
+ prompt_input = gr.Textbox(label="Prompt")
57
+ num_inference_steps_input = gr.Slider(minimum=0, maximum=100, value=50, label="Number of Inference Steps")
58
+ image_guidance_scale_input = gr.Slider(minimum=0.0, maximum=2.5, value=1.5, label="Image Guidance Scale")
59
+ guidance_scale_input = gr.Slider(minimum=0.0, maximum=17.5, value=12.5, label="Guidance Scale")
60
+ seed_input = gr.Textbox(value="255", label="Random Seed")
61
+
62
+ inputs = [image_mask_input, prompt_input, num_inference_steps_input, image_guidance_scale_input, guidance_scale_input,
63
+ seed_input]
64
+ outputs = gr.Image(label="Generated Image")
65
+
66
+
67
+ # Custom HTML content
68
+ article_html = """
69
+ <h2>Welcome to the Image Generation Interface</h2>
70
+ <p>This interface allows you to generate images based on a given mask and prompt. Use the sliders to adjust the inference steps and guidance scales, and provide a seed for reproducibility.</p>
71
  """
72
 
73
+ demo = gr.Interface(
74
+ fn=generate,
75
+ inputs=inputs,
76
+ outputs=outputs,
77
+ article=article_html # Add article parameter
78
+ )
79
+
80
+ demo.queue().launch()
81
+