Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn.init as init | |
import argparse | |
from cgitb import text | |
import copy | |
import gc | |
import itertools | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
from tkinter import NO | |
import warnings | |
from contextlib import nullcontext | |
from pathlib import Path | |
import PIL.Image | |
import PIL.ImageOps | |
import numpy as np | |
from sympy import N | |
import torch | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
from huggingface_hub import create_repo, upload_folder | |
from huggingface_hub.utils import insecure_hashlib | |
from PIL import Image | |
from PIL.ImageOps import exif_transpose | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from torchvision.transforms.functional import crop | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, PretrainedConfig, T5EncoderModel, T5TokenizerFast | |
# from transformer_sd3 import SD3Transformer2DModel | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
StableDiffusion3Pipeline, | |
SD3Transformer2DModel, | |
StableDiffusion3InstructPix2PixPipeline | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import ( | |
check_min_version, | |
is_wandb_available, | |
) | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.torch_utils import is_compiled_module | |
import accelerate | |
import datasets | |
import PIL | |
import requests | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from os.path import join | |
from datasets import load_dataset | |
from packaging import version | |
def load_text_encoders(class_one, class_two, class_three): | |
text_encoder_one = class_one.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
text_encoder_two = class_two.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
) | |
text_encoder_three = class_three.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant | |
) | |
return text_encoder_one, text_encoder_two, text_encoder_three | |
def tokenize_prompt(tokenizer, prompt, max_sequence_length=77): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
def _encode_prompt_with_t5( | |
text_encoder, | |
tokenizer, | |
max_sequence_length, | |
text_encoder_dtype, | |
prompt=None, | |
num_images_per_prompt=1, | |
device=None, | |
text_input_ids=None | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if text_input_ids is None: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=text_encoder_dtype, device=device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
return prompt_embeds | |
def _encode_prompt_with_clip( | |
text_encoder, | |
tokenizer, | |
prompt: str, | |
text_encoder_dtype, | |
device=None, | |
num_images_per_prompt: int = 1, | |
text_input_ids=None | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if text_input_ids is None: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
prompt_embeds = prompt_embeds.to(dtype=text_encoder_dtype, device=device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
return prompt_embeds, pooled_prompt_embeds | |
def encode_prompt( | |
text_encoders, | |
tokenizers, | |
prompt: str, | |
max_sequence_length=None, | |
text_encoders_dtypes=[torch.float32,torch.float32,torch.float32], | |
device=None, | |
num_images_per_prompt: int = 1, | |
text_input_ids_list=None | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
clip_prompt_embeds_list = [] | |
clip_pooled_prompt_embeds_list = [] | |
clip_tokenizers = tokenizers[:2] | |
clip_text_encoders = text_encoders[:2] | |
clip_text_encoders_dtypes = text_encoders_dtypes[:2] | |
if text_input_ids_list is not None: | |
clip_text_input_ids_list = text_input_ids_list[:2] | |
else: | |
clip_text_input_ids_list = [None, None] | |
zipped_text_encoders = zip(clip_tokenizers, clip_text_encoders, clip_text_encoders_dtypes, clip_text_input_ids_list) | |
for tokenizer, text_encoder, clip_text_encoder_dtype, text_input_ids in zipped_text_encoders: | |
prompt_embeds, pooled_prompt_embeds = _encode_prompt_with_clip( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
prompt=prompt, | |
text_encoder_dtype=clip_text_encoder_dtype, | |
device=device if device is not None else text_encoder.device, | |
num_images_per_prompt=num_images_per_prompt, | |
text_input_ids=text_input_ids, | |
) | |
clip_prompt_embeds_list.append(prompt_embeds) | |
clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds) | |
clip_prompt_embeds = torch.cat(clip_prompt_embeds_list, dim=-1) | |
pooled_prompt_embeds = torch.cat(clip_pooled_prompt_embeds_list, dim=-1) | |
if text_input_ids_list is not None: | |
t5_text_input_ids = text_input_ids_list[-1] | |
else: | |
t5_text_input_ids = None | |
t5_prompt_embed = _encode_prompt_with_t5( | |
text_encoders[-1], | |
tokenizers[-1], | |
max_sequence_length, | |
clip_text_encoders_dtypes[-1], | |
prompt=prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device if device is not None else text_encoders[-1].device, | |
text_input_ids=t5_text_input_ids | |
) | |
clip_prompt_embeds = torch.nn.functional.pad( | |
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) | |
) | |
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) | |
return prompt_embeds, pooled_prompt_embeds | |
logger = get_logger(__name__, log_level="INFO") | |
DATASET_NAME_MAPPING = { | |
"BleachNick/UltraEdit_500k": ("source_image", "edited_image", "edit_prompt"), | |
} | |
WANDB_TABLE_COL_NAMES = ["source_image", "edited_image", "edit_prompt"] | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--ori_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to ori_model_name_or_path.", | |
) | |
parser.add_argument( | |
"--weighting_scheme", type=str, default="logit_normal", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"] | |
) | |
parser.add_argument( | |
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." | |
) | |
parser.add_argument( | |
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." | |
) | |
parser.add_argument( | |
"--mode_scale", | |
type=float, | |
default=1.29, | |
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", | |
) | |
parser.add_argument( | |
"--optimizer", | |
type=str, | |
default="AdamW", | |
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), | |
) | |
parser.add_argument( | |
"--use_8bit_adam", | |
action="store_true", | |
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", | |
) | |
parser.add_argument( | |
"--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder" | |
) | |
parser.add_argument( | |
"--prodigy_beta3", | |
type=float, | |
default=None, | |
help="coefficients for computing the Prodidy stepsize using running averages. If set to None, " | |
"uses the value of square root of beta2. Ignored if optimizer is adamW", | |
) | |
parser.add_argument( | |
"--prodigy_use_bias_correction", | |
type=bool, | |
default=True, | |
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", | |
) | |
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") | |
parser.add_argument( | |
"--prodigy_safeguard_warmup", | |
type=bool, | |
default=True, | |
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " | |
"Ignored if optimizer is adamW", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--train_data_jsonl", | |
type=str, | |
default=None, | |
help=( | |
"A folder containing the training data. Folder contents must follow the structure described in" | |
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
), | |
) | |
parser.add_argument( | |
"--original_image_column", | |
type=str, | |
default="source_image", | |
help="The column of the dataset containing the original image on which edits where made.", | |
) | |
parser.add_argument( | |
"--config_file", | |
type=str, | |
default=None, | |
) | |
parser.add_argument( | |
"--edited_image_column", | |
type=str, | |
default="edited_image", | |
help="The column of the dataset containing the edited image.", | |
) | |
parser.add_argument( | |
"--edit_prompt_column", | |
type=str, | |
default="edit_prompt", | |
help="The column of the dataset containing the edit instruction.", | |
) | |
parser.add_argument( | |
"--val_image_url", | |
type=str, | |
default=None, | |
help="URL to the original image that you would like to edit (used during inference for debugging purposes).", | |
) | |
parser.add_argument( | |
'--val_mask_url', | |
type=str, | |
default=None, | |
help="URL to the mask image that you would like to edit (used during inference for debugging purposes).", | |
) | |
parser.add_argument( | |
"--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=4, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=1, | |
help=( | |
"Run fine-tuning validation every X epochs. The validation process consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--validation_step", | |
type=int, | |
default=5000, | |
help=( | |
"Run fine-tuning validation every X steps. The validation process consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--top_training_data_sample", | |
type=int, | |
default=None, | |
help="Number of top samples to use for training, ranked by clip-sim-dit. If None, use the full dataset.", | |
) | |
parser.add_argument( | |
"--max_train_samples", | |
type=int, | |
default=None, | |
help=( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="sd3_edit", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=256, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--eval_resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--max_sequence_length", | |
type=int, | |
default=77, | |
help="Maximum sequence length to use with with the T5 text encoder", | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--random_flip", | |
action="store_true", | |
help="whether to randomly flip images horizontally", | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=100) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="cosine", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--conditioning_dropout_prob", | |
type=float, | |
default=None, | |
help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--text_encoder_lr", | |
type=float, | |
default=5e-6, | |
help="Text encoder learning rate to use.", | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--train_text_encoder", | |
action="store_true" | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--do_mask", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--mask_column", | |
type=str, | |
default="mask_image", | |
help="The column of the dataset containing the original image`s mask.", | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
# Sanity checks | |
if args.dataset_name is None and args.train_data_jsonl is None: | |
raise ValueError("Need either a dataset name or a training folder.") | |
# default to using the same revision for the non-ema model if not specified | |
return args | |
def combine_rgb_and_mask_to_rgba(rgb_image, mask_image): | |
# Ensure the input images are the same size | |
if rgb_image.size != mask_image.size: | |
raise ValueError("The RGB image and the mask image must have the same dimensions") | |
# Convert the mask image to 'L' mode (grayscale) if it is not | |
if mask_image.mode != 'L': | |
mask_image = mask_image.convert('L') | |
# Split the RGB image into its three channels | |
r, g, b = rgb_image.split() | |
# Combine the RGB channels with the mask to form an RGBA image | |
rgba_image = Image.merge("RGBA", (r, g, b, mask_image)) | |
return rgba_image | |
def convert_to_np(image, resolution): | |
try: | |
if isinstance(image, str): | |
if image == "NONE": | |
image = PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255)) | |
else: | |
image = PIL.Image.open(image) | |
image = image.convert("RGB").resize((resolution, resolution)) | |
return np.array(image).transpose(2, 0, 1) | |
except Exception as e: | |
print("Load error", image) | |
print(e) | |
# New blank image | |
image = PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255)) | |
return np.array(image).transpose(2, 0, 1) | |
def import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModelWithProjection": | |
from transformers import CLIPTextModelWithProjection | |
return CLIPTextModelWithProjection | |
elif model_class == "T5EncoderModel": | |
from transformers import T5EncoderModel | |
return T5EncoderModel | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def main(): | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
from accelerate import DistributedDataParallelKwargs as DDPK | |
kwargs = DDPK(find_unused_parameters=True) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
kwargs_handlers=[kwargs], | |
) | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
def download_image(path_or_url,resolution=512): | |
# Check if path_or_url is a local file path | |
if path_or_url is None: | |
# return a white RBG image image | |
return PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255)) | |
if os.path.exists(path_or_url): | |
image = Image.open(path_or_url).convert("RGB").resize((resolution, resolution)) | |
else: | |
image = Image.open(requests.get(path_or_url, stream=True).raw).convert("RGB") | |
image = PIL.ImageOps.exif_transpose(image) | |
return image | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
import wandb | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load scheduler, tokenizer and models. | |
# Load the tokenizers | |
tokenizer_one = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
) | |
tokenizer_two = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer_2", | |
revision=args.revision, | |
) | |
tokenizer_three = T5TokenizerFast.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer_3", | |
revision=args.revision, | |
) | |
# import correct text encoder classes | |
text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
args.pretrained_model_name_or_path, args.revision | |
) | |
text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" | |
) | |
text_encoder_cls_three = import_model_class_from_model_name_or_path( | |
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3" | |
) | |
# Load scheduler and models | |
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="scheduler" | |
) | |
noise_scheduler_copy = copy.deepcopy(noise_scheduler) | |
text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders( | |
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three | |
) | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="vae", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
transformer = SD3Transformer2DModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant | |
) | |
# TODO | |
logger.info("Initializing the new channel of DIT from the pretrained DIT.") | |
in_channels = int(1.5 * transformer.config.in_channels) if args.do_mask else 2 * transformer.config.in_channels # 48 for mask | |
out_channels = transformer.pos_embed.proj.out_channels | |
load_num_channel = transformer.config.in_channels | |
print("Do mask",args.do_mask) | |
print("new in_channels",in_channels) | |
print("load_num_channel",load_num_channel) | |
transformer.register_to_config(in_channels=in_channels) | |
print("transformer.pos_embed.proj.weight.shape", transformer.pos_embed.proj.weight.shape) | |
print("load_num_channel", load_num_channel) | |
with torch.no_grad(): | |
new_proj = nn.Conv2d( | |
in_channels, out_channels, kernel_size=(transformer.config.patch_size, transformer.config.patch_size), | |
stride=transformer.config.patch_size, bias=True | |
) | |
print("new_proj", new_proj) | |
new_proj.weight.zero_() | |
# init.kaiming_normal_(new_proj.weight, mode='fan_out', nonlinearity='relu') | |
# if new_proj.bias is not None and transformer.pos_embed.proj.bias is not None: | |
# new_proj.bias.copy_(transformer.pos_embed.proj.bias) | |
# else: | |
# if new_proj.bias is not None: | |
# new_proj.bias.zero_() | |
new_proj = new_proj.to(transformer.pos_embed.proj.weight.dtype) | |
new_proj.weight[:, :load_num_channel, :, :].copy_(transformer.pos_embed.proj.weight) | |
new_proj.bias.copy_(transformer.pos_embed.proj.bias) | |
print("new_proj", new_proj.weight.shape) | |
print("transformer.pos_embed.proj", transformer.pos_embed.proj.weight.shape) | |
transformer.pos_embed.proj = new_proj | |
for param in transformer.parameters(): | |
param.requires_grad = True | |
transformer.requires_grad_(True) | |
vae.requires_grad_(False) | |
if args.train_text_encoder: | |
text_encoder_one.requires_grad_(True) | |
text_encoder_two.requires_grad_(True) | |
text_encoder_three.requires_grad_(True) | |
else: | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
text_encoder_three.requires_grad_(False) | |
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: | |
# due to pytorch#99272, MPS does not yet support bfloat16. | |
raise ValueError( | |
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
) | |
vae.to(accelerator.device, dtype=torch.float32) | |
if not args.train_text_encoder: | |
text_encoder_one.to(accelerator.device, dtype=weight_dtype) | |
text_encoder_two.to(accelerator.device, dtype=weight_dtype) | |
text_encoder_three.to(accelerator.device, dtype=weight_dtype) | |
if args.gradient_checkpointing: | |
transformer.enable_gradient_checkpointing() | |
if args.train_text_encoder: | |
text_encoder_one.gradient_checkpointing_enable() | |
text_encoder_two.gradient_checkpointing_enable() | |
text_encoder_three.gradient_checkpointing_enable() | |
def unwrap_model(model): | |
model = accelerator.unwrap_model(model) | |
model = model._orig_mod if is_compiled_module(model) else model | |
return model | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
for i, model in enumerate(models): | |
if isinstance(unwrap_model(model), SD3Transformer2DModel): | |
unwrap_model(model).save_pretrained(os.path.join(output_dir, "transformer")) | |
elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)): | |
if isinstance(unwrap_model(model), CLIPTextModelWithProjection): | |
hidden_size = unwrap_model(model).config.hidden_size | |
if hidden_size == 768: | |
unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder")) | |
elif hidden_size == 1280: | |
unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_2")) | |
else: | |
unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_3")) | |
else: | |
raise ValueError(f"Wrong model supplied: {type(model)=}.") | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
for _ in range(len(models)): | |
# pop models so that they are not loaded again | |
model = models.pop() | |
# load diffusers style into model | |
if isinstance(unwrap_model(model), SD3Transformer2DModel): | |
load_model = SD3Transformer2DModel.from_pretrained(input_dir, subfolder="transformer") | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)): | |
try: | |
load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder") | |
model(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
except Exception: | |
try: | |
load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder_2") | |
model(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
except Exception: | |
try: | |
load_model = T5EncoderModel.from_pretrained(input_dir, subfolder="text_encoder_3") | |
model(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
except Exception: | |
raise ValueError(f"Couldn't load the model of type: ({type(model)}).") | |
else: | |
raise ValueError(f"Unsupported model found: {type(model)=}") | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
transformer_parameters_with_lr = {"params": transformer.parameters(), "lr": args.learning_rate} | |
if args.train_text_encoder: | |
# different learning rate for text encoder and unet | |
text_parameters_one_with_lr = { | |
"params": text_encoder_one.parameters(), | |
"weight_decay": args.adam_weight_decay_text_encoder, | |
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, | |
} | |
text_parameters_two_with_lr = { | |
"params": text_encoder_two.parameters(), | |
"weight_decay": args.adam_weight_decay_text_encoder, | |
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, | |
} | |
text_parameters_three_with_lr = { | |
"params": text_encoder_three.parameters(), | |
"weight_decay": args.adam_weight_decay_text_encoder, | |
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, | |
} | |
params_to_optimize = [ | |
transformer_parameters_with_lr, | |
text_parameters_one_with_lr, | |
text_parameters_two_with_lr, | |
text_parameters_three_with_lr, | |
] | |
else: | |
params_to_optimize = [transformer_parameters_with_lr] | |
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): | |
logger.warning( | |
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." | |
"Defaulting to adamW" | |
) | |
args.optimizer = "adamw" | |
# Initialize the optimizer | |
if args.use_8bit_adam and not args.optimizer.lower() == "adamw": | |
logger.warning( | |
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " | |
f"set to {args.optimizer.lower()}" | |
) | |
if args.optimizer.lower() == "adamw": | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
optimizer = optimizer_class( | |
params_to_optimize, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
if args.optimizer.lower() == "prodigy": | |
try: | |
import prodigyopt | |
except ImportError: | |
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") | |
optimizer_class = prodigyopt.Prodigy | |
if args.learning_rate <= 0.1: | |
logger.warning( | |
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" | |
) | |
if args.train_text_encoder and args.text_encoder_lr: | |
logger.warning( | |
f"Learning rates were provided both for the transformer and the text encoder- e.g. text_encoder_lr:" | |
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. " | |
f"When using prodigy only learning_rate is used as the initial learning rate." | |
) | |
# changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be | |
# --learning_rate | |
params_to_optimize[1]["lr"] = args.learning_rate | |
params_to_optimize[2]["lr"] = args.learning_rate | |
params_to_optimize[3]["lr"] = args.learning_rate | |
optimizer = optimizer_class( | |
params_to_optimize, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
beta3=args.prodigy_beta3, | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
decouple=args.prodigy_decouple, | |
use_bias_correction=args.prodigy_use_bias_correction, | |
safeguard_warmup=args.prodigy_safeguard_warmup, | |
) | |
text_encoders_dtypes = [text_encoder_one.dtype, text_encoder_two.dtype, text_encoder_three.dtype] | |
if not args.train_text_encoder: | |
tokenizers = [tokenizer_one, tokenizer_two, tokenizer_three] | |
text_encoders = [text_encoder_one, text_encoder_two, text_encoder_three] | |
def compute_text_embeddings(prompt, text_encoders, tokenizers,text_encoders_dtypes): | |
with torch.no_grad(): | |
prompt_embeds, pooled_prompt_embeds = encode_prompt( | |
text_encoders, tokenizers, prompt, args.max_sequence_length, text_encoders_dtypes | |
) | |
prompt_embeds = prompt_embeds.to(accelerator.device) | |
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) | |
return prompt_embeds, pooled_prompt_embeds | |
# Get the datasets: you can either provide your own training and evaluation files (see below) | |
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
if args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
args.dataset_name, | |
args.dataset_config_name, | |
cache_dir=args.cache_dir, | |
) | |
else: | |
if args.train_data_jsonl is not None: | |
dataset = load_dataset( | |
"json", | |
data_files=args.train_data_jsonl, | |
cache_dir=args.cache_dir, | |
# split="train" | |
) | |
# See more about loading custom images at | |
# https://huggingface.co/docs/datasets/main/en/image_load#imagefolder | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
column_names = dataset["train"].column_names | |
# 6. Get the column names for input/target. | |
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) | |
if args.original_image_column is None: | |
original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
else: | |
original_image_column = args.original_image_column | |
if original_image_column not in column_names: | |
raise ValueError( | |
f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if args.edit_prompt_column is None: | |
edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
else: | |
edit_prompt_column = args.edit_prompt_column | |
if edit_prompt_column not in column_names: | |
raise ValueError( | |
f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if args.edited_image_column is None: | |
edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2] | |
else: | |
edited_image_column = args.edited_image_column | |
if edited_image_column not in column_names: | |
raise ValueError( | |
f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
# Preprocessing the datasets. | |
# We need to tokenize input captions and transform the images. | |
# def tokenize_captions(captions): | |
# inputs = tokenizer( | |
# captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
# ) | |
# return inputs.input_ids | |
# Preprocessing the datasets. | |
train_transforms = transforms.Compose( | |
[ | |
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), | |
] | |
) | |
def preprocess_images(examples): | |
original_images = np.concatenate( | |
[convert_to_np(image, args.resolution) for image in examples[original_image_column]] | |
) | |
edited_images = np.concatenate( | |
[convert_to_np(image, args.resolution) for image in examples[edited_image_column]] | |
) | |
if args.do_mask: | |
mask_images = np.concatenate( | |
[convert_to_np(image, args.resolution) for image in examples[args.mask_column]] | |
) | |
# We need to ensure that the original and the edited images undergo the same | |
# augmentation transforms. | |
images = np.concatenate([original_images, edited_images, mask_images]) | |
images = torch.tensor(images) | |
images = 2 * (images / 255) - 1 | |
# mask_index = torch.tensor([image == "NONE" for image in examples[args.mask_column]],dtype=torch.bool) | |
# return train_transforms(images),mask_index | |
return train_transforms(images) | |
# We need to ensure that the original and the edited images undergo the same | |
# augmentation transforms. | |
images = np.concatenate([original_images, edited_images]) | |
images = torch.tensor(images) | |
images = 2 * (images / 255) - 1 | |
return train_transforms(images) | |
def preprocess_train(examples): | |
# Preprocess images. | |
# Since the original and edited images were concatenated before | |
# applying the transformations, we need to separate them and reshape | |
# them accordingly. | |
preprocessed_images = preprocess_images(examples) | |
if not args.do_mask: | |
# preprocessed_images = preprocess_images(examples) | |
original_images, edited_images = preprocessed_images.chunk(2) | |
else: | |
# preprocessed_images = preprocess_images(examples) | |
# preprocessed_images,mask_index = preprocess_images(examples) | |
original_images, edited_images, mask_images = preprocessed_images.chunk(3) | |
mask_images = mask_images.reshape(-1, 3, args.resolution, args.resolution) | |
# examples["mask_index"] = mask_index | |
examples["mask_pixel_values"] = mask_images | |
original_images = original_images.reshape(-1, 3, args.resolution, args.resolution) | |
edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) | |
examples["original_pixel_values"] = original_images | |
examples["edited_pixel_values"] = edited_images | |
# Preprocess the captions. | |
# captions = list(examples[edit_prompt_column]) | |
# examples[edit_prompt_column] = captions | |
return examples | |
with accelerator.main_process_first(): | |
if args.top_training_data_sample is not None: | |
dataset["train"] = dataset["train"].select(range(args.top_training_data_sample)).shuffle(seed=args.seed) | |
if args.max_train_samples is not None: | |
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
# Set the training transforms | |
train_dataset = dataset["train"].with_transform(preprocess_train) | |
def collate_fn(examples): | |
original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples]) | |
original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float() | |
edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples]) | |
edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float() | |
prompts = [example[edit_prompt_column] for example in examples] | |
if args.do_mask: | |
mask_pixel_values = torch.stack([example["mask_pixel_values"] for example in examples]) | |
mask_pixel_values = mask_pixel_values.to(memory_format=torch.contiguous_format).float() | |
return { | |
"original_pixel_values": original_pixel_values, | |
"edited_pixel_values": edited_pixel_values, | |
edit_prompt_column: prompts, | |
"mask_pixel_values": mask_pixel_values, | |
} | |
else: | |
return { | |
"original_pixel_values": original_pixel_values, | |
"edited_pixel_values": edited_pixel_values, | |
edit_prompt_column: prompts, | |
} | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
shuffle=True, | |
collate_fn=collate_fn, | |
batch_size=args.train_batch_size, | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
if args.train_text_encoder: | |
( | |
transformer, | |
text_encoder_one, | |
text_encoder_two, | |
text_encoder_three, | |
optimizer, | |
train_dataloader, | |
lr_scheduler, | |
) = accelerator.prepare( | |
transformer, | |
text_encoder_one, | |
text_encoder_two, | |
text_encoder_three, | |
optimizer, | |
train_dataloader, | |
lr_scheduler, | |
) | |
else: | |
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
transformer, optimizer, train_dataloader, lr_scheduler | |
) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
if accelerator.is_main_process: | |
pretrained_path = args.pretrained_model_name_or_path | |
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained( | |
pretrained_path, | |
vae=vae, | |
text_encoder=accelerator.unwrap_model(text_encoder_one), | |
text_encoder_2=accelerator.unwrap_model(text_encoder_two), | |
text_encoder_3=accelerator.unwrap_model(text_encoder_three), | |
transformer=accelerator.unwrap_model(transformer), | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
generator = torch.Generator(device=accelerator.device).manual_seed( | |
args.seed) if args.seed else None | |
if args.do_mask: | |
original_image = download_image(args.val_image_url, args.eval_resolution) | |
mask_image = download_image(args.val_mask_url, args.eval_resolution) | |
else: | |
original_image = download_image(args.val_image_url, args.eval_resolution) | |
mask_image = None | |
edited_images = [] | |
with torch.autocast( | |
str(accelerator.device).replace(":0", ""), | |
enabled=(accelerator.mixed_precision == "fp16") | ( | |
accelerator.mixed_precision == "bf16") | |
): | |
for i in range(args.num_validation_images): | |
edited_images.append( | |
pipeline( | |
args.validation_prompt, | |
image=original_image, | |
mask_img=mask_image, | |
num_inference_steps=50, | |
image_guidance_scale=1.5, | |
guidance_scale=7.5, | |
generator=generator, | |
).images[0] | |
) | |
path = join(args.output_dir, f"start_test") | |
os.makedirs(path, exist_ok=True) | |
original_image.save(join(path, f"original.jpg")) | |
for idx, edited_image in enumerate(edited_images): | |
edited_image.save(join(path, f"sample_{idx}.jpg")) | |
del pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
print('=========num_update_steps_per_epoch==========', num_update_steps_per_epoch) | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
accelerator.init_trackers("instruct-pix2pix_sd3", config=vars(args)) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
resume_global_step = global_step * args.gradient_accumulation_steps | |
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
else: | |
initial_global_step = 0 | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm(range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", | |
disable=not accelerator.is_local_main_process) | |
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) | |
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) | |
timesteps = timesteps.to(accelerator.device) | |
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < n_dim: | |
sigma = sigma.unsqueeze(-1) | |
return sigma | |
# with torch.autograd.set_detect_anomaly(True): | |
for epoch in range(first_epoch, args.num_train_epochs): | |
transformer.train() | |
if args.train_text_encoder: | |
text_encoder_one.train() | |
text_encoder_two.train() | |
text_encoder_three.train() | |
train_loss = 0.0 | |
for step, batch in enumerate(train_dataloader): | |
# Skip steps until we reach the resumed step | |
# if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
# if step % args.gradient_accumulation_steps == 0: | |
# progress_bar.update(1) | |
# continue | |
models_to_accumulate = [transformer] | |
if args.train_text_encoder: | |
models_to_accumulate.extend([text_encoder_one, text_encoder_two, text_encoder_three]) | |
with accelerator.accumulate(models_to_accumulate): | |
# We want to learn the denoising process w.r.t the edited images which | |
# are conditioned on the original image (which was edited) and the edit instruction. | |
# So, first, convert images to latent space.] | |
pixel_values = batch["edited_pixel_values"].to(dtype=vae.dtype) | |
prompt = batch[edit_prompt_column] | |
if not args.train_text_encoder: | |
prompt_embeds, pooled_prompt_embeds = compute_text_embeddings( | |
prompt, text_encoders, tokenizers,text_encoders_dtypes | |
) | |
else: | |
tokens_one = tokenize_prompt(tokenizer_one, prompt) | |
tokens_two = tokenize_prompt(tokenizer_two, prompt) | |
tokens_three = tokenize_prompt(tokenizer_three, prompt, args.max_sequence_length) | |
latents = vae.encode(pixel_values).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
latents = latents.to(dtype=weight_dtype) | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each image | |
# for weighting schemes where we sample timesteps non-uniformly | |
if args.weighting_scheme == "logit_normal": | |
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$). | |
u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device="cpu") | |
u = torch.nn.functional.sigmoid(u) | |
elif args.weighting_scheme == "mode": | |
u = torch.rand(size=(bsz,), device="cpu") | |
u = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) | |
else: | |
u = torch.rand(size=(bsz,), device="cpu") | |
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() | |
timesteps = noise_scheduler_copy.timesteps[indices].to(device=latents.device) | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
sigmas = get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype) | |
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents | |
# Get the additional image embedding for conditioning. | |
# Instead of getting a diagonal Gaussian here, we simply take the mode. | |
original_image_embeds = vae.encode(batch["original_pixel_values"].to(vae.dtype)).latent_dist.mode() | |
concatenated_noisy_latents = torch.cat([noisy_model_input, original_image_embeds], dim=1) | |
if args.do_mask: | |
mask_embeds = vae.encode(batch["mask_pixel_values"].to(vae.dtype)).latent_dist.mode() | |
concatenated_noisy_latents = torch.cat([concatenated_noisy_latents, mask_embeds], dim=1) | |
# Predict the noise residual | |
if not args.train_text_encoder: | |
model_pred = transformer( | |
hidden_states=concatenated_noisy_latents, | |
timestep=timesteps, | |
encoder_hidden_states=prompt_embeds, | |
pooled_projections=pooled_prompt_embeds, | |
return_dict=False, | |
# mask_index = mask_index | |
)[0] | |
else: | |
prompt_embeds, pooled_prompt_embeds = encode_prompt( | |
text_encoders=[text_encoder_one, text_encoder_two, text_encoder_three], | |
tokenizers=[tokenizer_one, tokenizer_two, tokenizer_three], | |
prompt=prompt, | |
text_input_ids_list=[tokens_one, tokens_two, tokens_three], | |
max_sequence_length=args.max_sequence_length, | |
text_encoders_dtypes = text_encoders_dtypes | |
) | |
model_pred = transformer( | |
hidden_states=concatenated_noisy_latents, | |
timestep=timesteps, | |
encoder_hidden_states=prompt_embeds, | |
pooled_projections=pooled_prompt_embeds, | |
return_dict=False, | |
mask_index=mask_index | |
)[0] | |
model_pred = model_pred * (-sigmas) + noisy_model_input | |
# these weighting schemes use a uniform timestep sampling | |
# and instead post-weight the loss | |
if args.weighting_scheme == "sigma_sqrt": | |
weighting = (sigmas ** -2.0).float() | |
elif args.weighting_scheme == "cosmap": | |
bot = 1 - 2 * sigmas + 2 * sigmas ** 2 | |
weighting = 2 / (math.pi * bot) | |
else: | |
weighting = torch.ones_like(sigmas) | |
target = latents | |
# Conditioning dropout to support classifier-free guidance during inference. For more details | |
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. | |
# Concatenate the `original_image_embeds` with the `noisy_latents`. | |
# Get the target for loss depending on the prediction type | |
loss = torch.mean( | |
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), | |
1, | |
) | |
loss = loss.mean() | |
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
train_loss += avg_loss.item() / args.gradient_accumulation_steps | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = ( | |
itertools.chain( | |
transformer.parameters(), | |
text_encoder_one.parameters(), | |
text_encoder_two.parameters(), | |
text_encoder_three.parameters(), | |
) | |
if args.train_text_encoder | |
else transformer.parameters() | |
) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
accelerator.log({"train_loss": train_loss}, step=global_step) | |
train_loss = 0.0 | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if accelerator.is_main_process: | |
if ( | |
(args.val_image_url is not None) | |
and (args.validation_prompt is not None) | |
and (global_step % args.validation_step == 0) | |
): | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
f" {args.validation_prompt}." | |
) | |
# create pipeline | |
# if not args.train_text_encoder: | |
# text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders( | |
# text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three | |
# ) | |
if args.do_mask: | |
pretrained_path = args.ori_model_name_or_path | |
else: | |
pretrained_path = args.pretrained_model_name_or_path | |
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained( | |
pretrained_path, | |
vae=vae, | |
text_encoder=accelerator.unwrap_model(text_encoder_one), | |
text_encoder_2=accelerator.unwrap_model(text_encoder_two), | |
text_encoder_3=accelerator.unwrap_model(text_encoder_three), | |
transformer=accelerator.unwrap_model(transformer), | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
generator = torch.Generator(device=accelerator.device).manual_seed( | |
args.seed) if args.seed else None | |
# run inference | |
if args.do_mask: | |
original_image = download_image(args.val_image_url,args.eval_resolution) | |
mask_image = download_image(args.val_mask_url,args.eval_resolution) | |
else: | |
original_image = download_image(args.val_image_url,args.eval_resolution) | |
mask_image = None | |
edited_images = [] | |
with torch.autocast( | |
str(accelerator.device).replace(":0", ""), | |
enabled=(accelerator.mixed_precision == "fp16") | ( | |
accelerator.mixed_precision == "bf16") | |
): | |
for i in range(args.num_validation_images): | |
edited_images.append( | |
pipeline( | |
args.validation_prompt, | |
image=original_image, | |
mask_img=mask_image, | |
num_inference_steps=50, | |
image_guidance_scale=1.5, | |
guidance_scale=7.5, | |
generator=generator, | |
).images[0] | |
) | |
for tracker in accelerator.trackers: | |
path = join(args.output_dir, f"eval_{global_step}") | |
os.makedirs(path, exist_ok=True) | |
original_image.save(join(path, f"original.jpg")) | |
if tracker.name == "wandb": | |
wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) | |
for idx, edited_image in enumerate(edited_images): | |
wandb_table.add_data( | |
wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt | |
) | |
# save in the dir as well | |
tracker.log({"validation": wandb_table}) | |
for idx, edited_image in enumerate(edited_images): | |
edited_image.save(join(path, f"sample_{idx}.jpg")) | |
del pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
transformer = unwrap_model(transformer) | |
if args.train_text_encoder: | |
text_encoder_one = unwrap_model(text_encoder_one) | |
text_encoder_two = unwrap_model(text_encoder_two) | |
text_encoder_three = unwrap_model(text_encoder_three) | |
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
transformer=transformer, | |
text_encoder=text_encoder_one, | |
text_encoder_2=text_encoder_two, | |
text_encoder_3=text_encoder_three, | |
) | |
else: | |
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, transformer=transformer | |
) | |
pipeline.save_pretrained(args.output_dir) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main() | |