Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import torch | |
from diffusers import DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler | |
from .test_schedulers import SchedulerCommonTest | |
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest): | |
scheduler_classes = (DPMSolverMultistepInverseScheduler,) | |
forward_default_kwargs = (("num_inference_steps", 25),) | |
def get_scheduler_config(self, **kwargs): | |
config = { | |
"num_train_timesteps": 1000, | |
"beta_start": 0.0001, | |
"beta_end": 0.02, | |
"beta_schedule": "linear", | |
"solver_order": 2, | |
"prediction_type": "epsilon", | |
"thresholding": False, | |
"sample_max_value": 1.0, | |
"algorithm_type": "dpmsolver++", | |
"solver_type": "midpoint", | |
"lower_order_final": False, | |
"lambda_min_clipped": -float("inf"), | |
"variance_type": None, | |
} | |
config.update(**kwargs) | |
return config | |
def check_over_configs(self, time_step=0, **config): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", None) | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config(**config) | |
scheduler = scheduler_class(**scheduler_config) | |
scheduler.set_timesteps(num_inference_steps) | |
# copy over dummy past residuals | |
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_config(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
new_scheduler.set_timesteps(num_inference_steps) | |
# copy over dummy past residuals | |
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
output, new_output = sample, sample | |
for t in range(time_step, time_step + scheduler.config.solver_order + 1): | |
t = scheduler.timesteps[t] | |
output = scheduler.step(residual, t, output, **kwargs).prev_sample | |
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample | |
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
def test_from_save_pretrained(self): | |
pass | |
def check_over_forward(self, time_step=0, **forward_kwargs): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", None) | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
scheduler.set_timesteps(num_inference_steps) | |
# copy over dummy past residuals (must be after setting timesteps) | |
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_config(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
# copy over dummy past residuals | |
new_scheduler.set_timesteps(num_inference_steps) | |
# copy over dummy past residual (must be after setting timesteps) | |
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
def full_loop(self, scheduler=None, **config): | |
if scheduler is None: | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config(**config) | |
scheduler = scheduler_class(**scheduler_config) | |
num_inference_steps = 10 | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter | |
scheduler.set_timesteps(num_inference_steps) | |
for i, t in enumerate(scheduler.timesteps): | |
residual = model(sample, t) | |
sample = scheduler.step(residual, t, sample).prev_sample | |
return sample | |
def test_step_shape(self): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", None) | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
# copy over dummy past residuals (must be done after set_timesteps) | |
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
time_step_0 = scheduler.timesteps[5] | |
time_step_1 = scheduler.timesteps[6] | |
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample | |
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample | |
self.assertEqual(output_0.shape, sample.shape) | |
self.assertEqual(output_0.shape, output_1.shape) | |
def test_timesteps(self): | |
for timesteps in [25, 50, 100, 999, 1000]: | |
self.check_over_configs(num_train_timesteps=timesteps) | |
def test_thresholding(self): | |
self.check_over_configs(thresholding=False) | |
for order in [1, 2, 3]: | |
for solver_type in ["midpoint", "heun"]: | |
for threshold in [0.5, 1.0, 2.0]: | |
for prediction_type in ["epsilon", "sample"]: | |
self.check_over_configs( | |
thresholding=True, | |
prediction_type=prediction_type, | |
sample_max_value=threshold, | |
algorithm_type="dpmsolver++", | |
solver_order=order, | |
solver_type=solver_type, | |
) | |
def test_prediction_type(self): | |
for prediction_type in ["epsilon", "v_prediction"]: | |
self.check_over_configs(prediction_type=prediction_type) | |
def test_solver_order_and_type(self): | |
for algorithm_type in ["dpmsolver", "dpmsolver++"]: | |
for solver_type in ["midpoint", "heun"]: | |
for order in [1, 2, 3]: | |
for prediction_type in ["epsilon", "sample"]: | |
self.check_over_configs( | |
solver_order=order, | |
solver_type=solver_type, | |
prediction_type=prediction_type, | |
algorithm_type=algorithm_type, | |
) | |
sample = self.full_loop( | |
solver_order=order, | |
solver_type=solver_type, | |
prediction_type=prediction_type, | |
algorithm_type=algorithm_type, | |
) | |
assert not torch.isnan(sample).any(), "Samples have nan numbers" | |
def test_lower_order_final(self): | |
self.check_over_configs(lower_order_final=True) | |
self.check_over_configs(lower_order_final=False) | |
def test_lambda_min_clipped(self): | |
self.check_over_configs(lambda_min_clipped=-float("inf")) | |
self.check_over_configs(lambda_min_clipped=-5.1) | |
def test_variance_type(self): | |
self.check_over_configs(variance_type=None) | |
self.check_over_configs(variance_type="learned_range") | |
def test_timestep_spacing(self): | |
for timestep_spacing in ["trailing", "leading"]: | |
self.check_over_configs(timestep_spacing=timestep_spacing) | |
def test_inference_steps(self): | |
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: | |
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) | |
def test_full_loop_no_noise(self): | |
sample = self.full_loop() | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_mean.item() - 0.7047) < 1e-3 | |
def test_full_loop_no_noise_thres(self): | |
sample = self.full_loop(thresholding=True, dynamic_thresholding_ratio=0.87, sample_max_value=0.5) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_mean.item() - 19.8933) < 1e-3 | |
def test_full_loop_with_v_prediction(self): | |
sample = self.full_loop(prediction_type="v_prediction") | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_mean.item() - 1.5194) < 1e-3 | |
def test_full_loop_with_karras_and_v_prediction(self): | |
sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_mean.item() - 1.7833) < 2e-3 | |
def test_switch(self): | |
# make sure that iterating over schedulers with same config names gives same results | |
# for defaults | |
scheduler = DPMSolverMultistepInverseScheduler(**self.get_scheduler_config()) | |
sample = self.full_loop(scheduler=scheduler) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_mean.item() - 0.7047) < 1e-3 | |
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) | |
scheduler = DPMSolverMultistepInverseScheduler.from_config(scheduler.config) | |
sample = self.full_loop(scheduler=scheduler) | |
new_result_mean = torch.mean(torch.abs(sample)) | |
assert abs(new_result_mean.item() - result_mean.item()) < 1e-3 | |
def test_fp16_support(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) | |
scheduler = scheduler_class(**scheduler_config) | |
num_inference_steps = 10 | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter.half() | |
scheduler.set_timesteps(num_inference_steps) | |
for i, t in enumerate(scheduler.timesteps): | |
residual = model(sample, t) | |
sample = scheduler.step(residual, t, sample).prev_sample | |
assert sample.dtype == torch.float16 | |
def test_unique_timesteps(self, **config): | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config(**config) | |
scheduler = scheduler_class(**scheduler_config) | |
scheduler.set_timesteps(scheduler.config.num_train_timesteps) | |
assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps | |