Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import CMStochasticIterativeScheduler | |
from .test_schedulers import SchedulerCommonTest | |
class CMStochasticIterativeSchedulerTest(SchedulerCommonTest): | |
scheduler_classes = (CMStochasticIterativeScheduler,) | |
num_inference_steps = 10 | |
def get_scheduler_config(self, **kwargs): | |
config = { | |
"num_train_timesteps": 201, | |
"sigma_min": 0.002, | |
"sigma_max": 80.0, | |
} | |
config.update(**kwargs) | |
return config | |
# Override test_step_shape to add CMStochasticIterativeScheduler-specific logic regarding timesteps | |
# Problem is that we don't know two timesteps that will always be in the timestep schedule from only the scheduler | |
# config; scaled sigma_max is always in the timestep schedule, but sigma_min is in the sigma schedule while scaled | |
# sigma_min is not in the timestep schedule | |
def test_step_shape(self): | |
num_inference_steps = 10 | |
scheduler_config = self.get_scheduler_config() | |
scheduler = self.scheduler_classes[0](**scheduler_config) | |
scheduler.set_timesteps(num_inference_steps) | |
timestep_0 = scheduler.timesteps[0] | |
timestep_1 = scheduler.timesteps[1] | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample | |
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample | |
self.assertEqual(output_0.shape, sample.shape) | |
self.assertEqual(output_0.shape, output_1.shape) | |
def test_timesteps(self): | |
for timesteps in [10, 50, 100, 1000]: | |
self.check_over_configs(num_train_timesteps=timesteps) | |
def test_clip_denoised(self): | |
for clip_denoised in [True, False]: | |
self.check_over_configs(clip_denoised=clip_denoised) | |
def test_full_loop_no_noise_onestep(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
num_inference_steps = 1 | |
scheduler.set_timesteps(num_inference_steps) | |
timesteps = scheduler.timesteps | |
generator = torch.manual_seed(0) | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
for i, t in enumerate(timesteps): | |
# 1. scale model input | |
scaled_sample = scheduler.scale_model_input(sample, t) | |
# 2. predict noise residual | |
residual = model(scaled_sample, t) | |
# 3. predict previous sample x_t-1 | |
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
sample = pred_prev_sample | |
result_sum = torch.sum(torch.abs(sample)) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_sum.item() - 192.7614) < 1e-2 | |
assert abs(result_mean.item() - 0.2510) < 1e-3 | |
def test_full_loop_no_noise_multistep(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
timesteps = [106, 0] | |
scheduler.set_timesteps(timesteps=timesteps) | |
timesteps = scheduler.timesteps | |
generator = torch.manual_seed(0) | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
for t in timesteps: | |
# 1. scale model input | |
scaled_sample = scheduler.scale_model_input(sample, t) | |
# 2. predict noise residual | |
residual = model(scaled_sample, t) | |
# 3. predict previous sample x_t-1 | |
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
sample = pred_prev_sample | |
result_sum = torch.sum(torch.abs(sample)) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_sum.item() - 347.6357) < 1e-2 | |
assert abs(result_mean.item() - 0.4527) < 1e-3 | |
def test_full_loop_with_noise(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
num_inference_steps = 10 | |
t_start = 8 | |
scheduler.set_timesteps(num_inference_steps) | |
timesteps = scheduler.timesteps | |
generator = torch.manual_seed(0) | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
noise = self.dummy_noise_deter | |
timesteps = scheduler.timesteps[t_start * scheduler.order :] | |
sample = scheduler.add_noise(sample, noise, timesteps[:1]) | |
for t in timesteps: | |
# 1. scale model input | |
scaled_sample = scheduler.scale_model_input(sample, t) | |
# 2. predict noise residual | |
residual = model(scaled_sample, t) | |
# 3. predict previous sample x_t-1 | |
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
sample = pred_prev_sample | |
result_sum = torch.sum(torch.abs(sample)) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_sum.item() - 763.9186) < 1e-2, f" expected result sum 763.9186, but get {result_sum}" | |
assert abs(result_mean.item() - 0.9947) < 1e-3, f" expected result mean 0.9947, but get {result_mean}" | |
def test_custom_timesteps_increasing_order(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
timesteps = [39, 30, 12, 15, 0] | |
with self.assertRaises(ValueError, msg="`timesteps` must be in descending order."): | |
scheduler.set_timesteps(timesteps=timesteps) | |
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
timesteps = [39, 30, 12, 1, 0] | |
num_inference_steps = len(timesteps) | |
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `timesteps`."): | |
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps) | |
def test_custom_timesteps_too_large(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
timesteps = [scheduler.config.num_train_timesteps] | |
with self.assertRaises( | |
ValueError, | |
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", | |
): | |
scheduler.set_timesteps(timesteps=timesteps) | |