Spaces:
Runtime error
Runtime error
| import argparse | |
| import safetensors.torch | |
| from diffusers import AutoencoderTiny | |
| """ | |
| Example - From the diffusers root directory: | |
| Download the weights: | |
| ```sh | |
| $ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_encoder.safetensors | |
| $ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_decoder.safetensors | |
| ``` | |
| Convert the model: | |
| ```sh | |
| $ python scripts/convert_tiny_autoencoder_to_diffusers.py \ | |
| --encoder_ckpt_path taesd_encoder.safetensors \ | |
| --decoder_ckpt_path taesd_decoder.safetensors \ | |
| --dump_path taesd-diffusers | |
| ``` | |
| """ | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
| parser.add_argument( | |
| "--encoder_ckpt_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to the encoder ckpt.", | |
| ) | |
| parser.add_argument( | |
| "--decoder_ckpt_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to the decoder ckpt.", | |
| ) | |
| parser.add_argument( | |
| "--use_safetensors", action="store_true", help="Whether to serialize in the safetensors format." | |
| ) | |
| args = parser.parse_args() | |
| print("Loading the original state_dicts of the encoder and the decoder...") | |
| encoder_state_dict = safetensors.torch.load_file(args.encoder_ckpt_path) | |
| decoder_state_dict = safetensors.torch.load_file(args.decoder_ckpt_path) | |
| print("Populating the state_dicts in the diffusers format...") | |
| tiny_autoencoder = AutoencoderTiny() | |
| new_state_dict = {} | |
| # Modify the encoder state dict. | |
| for k in encoder_state_dict: | |
| new_state_dict.update({f"encoder.layers.{k}": encoder_state_dict[k]}) | |
| # Modify the decoder state dict. | |
| for k in decoder_state_dict: | |
| layer_id = int(k.split(".")[0]) - 1 | |
| new_k = str(layer_id) + "." + ".".join(k.split(".")[1:]) | |
| new_state_dict.update({f"decoder.layers.{new_k}": decoder_state_dict[k]}) | |
| # Assertion tests with the original implementation can be found here: | |
| # https://gist.github.com/sayakpaul/337b0988f08bd2cf2b248206f760e28f | |
| tiny_autoencoder.load_state_dict(new_state_dict) | |
| print("Population successful, serializing...") | |
| tiny_autoencoder.save_pretrained(args.dump_path, safe_serialization=args.use_safetensors) | |