Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import shutil | |
from pathlib import Path | |
import onnx | |
import onnx_graphsurgeon as gs | |
import torch | |
from onnx import shape_inference | |
from packaging import version | |
from polygraphy.backend.onnx.loader import fold_constants | |
from torch.onnx import export | |
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionControlNetImg2ImgPipeline, | |
) | |
from diffusers.models.attention_processor import AttnProcessor | |
from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline | |
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | |
is_torch_2_0_1 = version.parse(version.parse(torch.__version__).base_version) == version.parse("2.0.1") | |
class Optimizer: | |
def __init__(self, onnx_graph, verbose=False): | |
self.graph = gs.import_onnx(onnx_graph) | |
self.verbose = verbose | |
def info(self, prefix): | |
if self.verbose: | |
print( | |
f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs" | |
) | |
def cleanup(self, return_onnx=False): | |
self.graph.cleanup().toposort() | |
if return_onnx: | |
return gs.export_onnx(self.graph) | |
def select_outputs(self, keep, names=None): | |
self.graph.outputs = [self.graph.outputs[o] for o in keep] | |
if names: | |
for i, name in enumerate(names): | |
self.graph.outputs[i].name = name | |
def fold_constants(self, return_onnx=False): | |
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True) | |
self.graph = gs.import_onnx(onnx_graph) | |
if return_onnx: | |
return onnx_graph | |
def infer_shapes(self, return_onnx=False): | |
onnx_graph = gs.export_onnx(self.graph) | |
if onnx_graph.ByteSize() > 2147483648: | |
raise TypeError("ERROR: model size exceeds supported 2GB limit") | |
else: | |
onnx_graph = shape_inference.infer_shapes(onnx_graph) | |
self.graph = gs.import_onnx(onnx_graph) | |
if return_onnx: | |
return onnx_graph | |
def optimize(onnx_graph, name, verbose): | |
opt = Optimizer(onnx_graph, verbose=verbose) | |
opt.info(name + ": original") | |
opt.cleanup() | |
opt.info(name + ": cleanup") | |
opt.fold_constants() | |
opt.info(name + ": fold constants") | |
# opt.infer_shapes() | |
# opt.info(name + ': shape inference') | |
onnx_opt_graph = opt.cleanup(return_onnx=True) | |
opt.info(name + ": finished") | |
return onnx_opt_graph | |
class UNet2DConditionControlNetModel(torch.nn.Module): | |
def __init__( | |
self, | |
unet, | |
controlnets: ControlNetModel, | |
): | |
super().__init__() | |
self.unet = unet | |
self.controlnets = controlnets | |
def forward( | |
self, | |
sample, | |
timestep, | |
encoder_hidden_states, | |
controlnet_conds, | |
controlnet_scales, | |
): | |
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate( | |
zip(controlnet_conds, controlnet_scales, self.controlnets) | |
): | |
down_samples, mid_sample = controlnet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
controlnet_cond=controlnet_cond, | |
conditioning_scale=conditioning_scale, | |
return_dict=False, | |
) | |
# merge samples | |
if i == 0: | |
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample | |
else: | |
down_block_res_samples = [ | |
samples_prev + samples_curr | |
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples) | |
] | |
mid_block_res_sample += mid_sample | |
noise_pred = self.unet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
return noise_pred | |
class UNet2DConditionXLControlNetModel(torch.nn.Module): | |
def __init__( | |
self, | |
unet, | |
controlnets: ControlNetModel, | |
): | |
super().__init__() | |
self.unet = unet | |
self.controlnets = controlnets | |
def forward( | |
self, | |
sample, | |
timestep, | |
encoder_hidden_states, | |
controlnet_conds, | |
controlnet_scales, | |
text_embeds, | |
time_ids, | |
): | |
added_cond_kwargs = {"text_embeds": text_embeds, "time_ids": time_ids} | |
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate( | |
zip(controlnet_conds, controlnet_scales, self.controlnets) | |
): | |
down_samples, mid_sample = controlnet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
controlnet_cond=controlnet_cond, | |
conditioning_scale=conditioning_scale, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
) | |
# merge samples | |
if i == 0: | |
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample | |
else: | |
down_block_res_samples = [ | |
samples_prev + samples_curr | |
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples) | |
] | |
mid_block_res_sample += mid_sample | |
noise_pred = self.unet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
return noise_pred | |
def onnx_export( | |
model, | |
model_args: tuple, | |
output_path: Path, | |
ordered_input_names, | |
output_names, | |
dynamic_axes, | |
opset, | |
use_external_data_format=False, | |
): | |
output_path.parent.mkdir(parents=True, exist_ok=True) | |
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | |
# so we check the torch version for backwards compatibility | |
with torch.inference_mode(), torch.autocast("cuda"): | |
if is_torch_less_than_1_11: | |
export( | |
model, | |
model_args, | |
f=output_path.as_posix(), | |
input_names=ordered_input_names, | |
output_names=output_names, | |
dynamic_axes=dynamic_axes, | |
do_constant_folding=True, | |
use_external_data_format=use_external_data_format, | |
enable_onnx_checker=True, | |
opset_version=opset, | |
) | |
else: | |
export( | |
model, | |
model_args, | |
f=output_path.as_posix(), | |
input_names=ordered_input_names, | |
output_names=output_names, | |
dynamic_axes=dynamic_axes, | |
do_constant_folding=True, | |
opset_version=opset, | |
) | |
def convert_models( | |
model_path: str, controlnet_path: list, output_path: str, opset: int, fp16: bool = False, sd_xl: bool = False | |
): | |
""" | |
Function to convert models in stable diffusion controlnet pipeline into ONNX format | |
Example: | |
python convert_stable_diffusion_controlnet_to_onnx.py | |
--model_path danbrown/RevAnimated-v1-2-2 | |
--controlnet_path lllyasviel/control_v11f1e_sd15_tile ioclab/brightness-controlnet | |
--output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2 | |
--fp16 | |
Example for SD XL: | |
python convert_stable_diffusion_controlnet_to_onnx.py | |
--model_path stabilityai/stable-diffusion-xl-base-1.0 | |
--controlnet_path SargeZT/sdxl-controlnet-seg | |
--output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0 | |
--fp16 | |
--sd_xl | |
Returns: | |
create 4 onnx models in output path | |
text_encoder/model.onnx | |
unet/model.onnx + unet/weights.pb | |
vae_encoder/model.onnx | |
vae_decoder/model.onnx | |
run test script in diffusers/examples/community | |
python test_onnx_controlnet.py | |
--sd_model danbrown/RevAnimated-v1-2-2 | |
--onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2 | |
--qr_img_path path-to-qr-code-image | |
""" | |
dtype = torch.float16 if fp16 else torch.float32 | |
if fp16 and torch.cuda.is_available(): | |
device = "cuda" | |
elif fp16 and not torch.cuda.is_available(): | |
raise ValueError("`float16` model export is only supported on GPUs with CUDA") | |
else: | |
device = "cpu" | |
# init controlnet | |
controlnets = [] | |
for path in controlnet_path: | |
controlnet = ControlNetModel.from_pretrained(path, torch_dtype=dtype).to(device) | |
if is_torch_2_0_1: | |
controlnet.set_attn_processor(AttnProcessor()) | |
controlnets.append(controlnet) | |
if sd_xl: | |
if len(controlnets) == 1: | |
controlnet = controlnets[0] | |
else: | |
raise ValueError("MultiControlNet is not yet supported.") | |
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( | |
model_path, controlnet=controlnet, torch_dtype=dtype, variant="fp16", use_safetensors=True | |
).to(device) | |
else: | |
pipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
model_path, controlnet=controlnets, torch_dtype=dtype | |
).to(device) | |
output_path = Path(output_path) | |
if is_torch_2_0_1: | |
pipeline.unet.set_attn_processor(AttnProcessor()) | |
pipeline.vae.set_attn_processor(AttnProcessor()) | |
# # TEXT ENCODER | |
num_tokens = pipeline.text_encoder.config.max_position_embeddings | |
text_hidden_size = pipeline.text_encoder.config.hidden_size | |
text_input = pipeline.tokenizer( | |
"A sample prompt", | |
padding="max_length", | |
max_length=pipeline.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
onnx_export( | |
pipeline.text_encoder, | |
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | |
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), | |
output_path=output_path / "text_encoder" / "model.onnx", | |
ordered_input_names=["input_ids"], | |
output_names=["last_hidden_state", "pooler_output"], | |
dynamic_axes={ | |
"input_ids": {0: "batch", 1: "sequence"}, | |
}, | |
opset=opset, | |
) | |
del pipeline.text_encoder | |
# # UNET | |
if sd_xl: | |
controlnets = torch.nn.ModuleList(controlnets) | |
unet_controlnet = UNet2DConditionXLControlNetModel(pipeline.unet, controlnets) | |
unet_in_channels = pipeline.unet.config.in_channels | |
unet_sample_size = pipeline.unet.config.sample_size | |
text_hidden_size = 2048 | |
img_size = 8 * unet_sample_size | |
unet_path = output_path / "unet" / "model.onnx" | |
onnx_export( | |
unet_controlnet, | |
model_args=( | |
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
torch.tensor([1.0]).to(device=device, dtype=dtype), | |
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), | |
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype), | |
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype), | |
torch.randn(2, 1280).to(device=device, dtype=dtype), | |
torch.rand(2, 6).to(device=device, dtype=dtype), | |
), | |
output_path=unet_path, | |
ordered_input_names=[ | |
"sample", | |
"timestep", | |
"encoder_hidden_states", | |
"controlnet_conds", | |
"conditioning_scales", | |
"text_embeds", | |
"time_ids", | |
], | |
output_names=["noise_pred"], # has to be different from "sample" for correct tracing | |
dynamic_axes={ | |
"sample": {0: "2B", 2: "H", 3: "W"}, | |
"encoder_hidden_states": {0: "2B"}, | |
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"}, | |
"text_embeds": {0: "2B"}, | |
"time_ids": {0: "2B"}, | |
}, | |
opset=opset, | |
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split | |
) | |
unet_model_path = str(unet_path.absolute().as_posix()) | |
unet_dir = os.path.dirname(unet_model_path) | |
# optimize onnx | |
shape_inference.infer_shapes_path(unet_model_path, unet_model_path) | |
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True) | |
# clean up existing tensor files | |
shutil.rmtree(unet_dir) | |
os.mkdir(unet_dir) | |
# collate external tensor files into one | |
onnx.save_model( | |
unet_opt_graph, | |
unet_model_path, | |
save_as_external_data=True, | |
all_tensors_to_one_file=True, | |
location="weights.pb", | |
convert_attribute=False, | |
) | |
del pipeline.unet | |
else: | |
controlnets = torch.nn.ModuleList(controlnets) | |
unet_controlnet = UNet2DConditionControlNetModel(pipeline.unet, controlnets) | |
unet_in_channels = pipeline.unet.config.in_channels | |
unet_sample_size = pipeline.unet.config.sample_size | |
img_size = 8 * unet_sample_size | |
unet_path = output_path / "unet" / "model.onnx" | |
onnx_export( | |
unet_controlnet, | |
model_args=( | |
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
torch.tensor([1.0]).to(device=device, dtype=dtype), | |
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), | |
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype), | |
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype), | |
), | |
output_path=unet_path, | |
ordered_input_names=[ | |
"sample", | |
"timestep", | |
"encoder_hidden_states", | |
"controlnet_conds", | |
"conditioning_scales", | |
], | |
output_names=["noise_pred"], # has to be different from "sample" for correct tracing | |
dynamic_axes={ | |
"sample": {0: "2B", 2: "H", 3: "W"}, | |
"encoder_hidden_states": {0: "2B"}, | |
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"}, | |
}, | |
opset=opset, | |
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split | |
) | |
unet_model_path = str(unet_path.absolute().as_posix()) | |
unet_dir = os.path.dirname(unet_model_path) | |
# optimize onnx | |
shape_inference.infer_shapes_path(unet_model_path, unet_model_path) | |
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True) | |
# clean up existing tensor files | |
shutil.rmtree(unet_dir) | |
os.mkdir(unet_dir) | |
# collate external tensor files into one | |
onnx.save_model( | |
unet_opt_graph, | |
unet_model_path, | |
save_as_external_data=True, | |
all_tensors_to_one_file=True, | |
location="weights.pb", | |
convert_attribute=False, | |
) | |
del pipeline.unet | |
# VAE ENCODER | |
vae_encoder = pipeline.vae | |
vae_in_channels = vae_encoder.config.in_channels | |
vae_sample_size = vae_encoder.config.sample_size | |
# need to get the raw tensor output (sample) from the encoder | |
vae_encoder.forward = lambda sample: vae_encoder.encode(sample).latent_dist.sample() | |
onnx_export( | |
vae_encoder, | |
model_args=(torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),), | |
output_path=output_path / "vae_encoder" / "model.onnx", | |
ordered_input_names=["sample"], | |
output_names=["latent_sample"], | |
dynamic_axes={ | |
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
}, | |
opset=opset, | |
) | |
# VAE DECODER | |
vae_decoder = pipeline.vae | |
vae_latent_channels = vae_decoder.config.latent_channels | |
# forward only through the decoder part | |
vae_decoder.forward = vae_encoder.decode | |
onnx_export( | |
vae_decoder, | |
model_args=( | |
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
), | |
output_path=output_path / "vae_decoder" / "model.onnx", | |
ordered_input_names=["latent_sample"], | |
output_names=["sample"], | |
dynamic_axes={ | |
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
}, | |
opset=opset, | |
) | |
del pipeline.vae | |
del pipeline | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline") | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
required=True, | |
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | |
) | |
parser.add_argument( | |
"--controlnet_path", | |
nargs="+", | |
required=True, | |
help="Path to the `controlnet` checkpoint to convert (either a local directory or on the Hub).", | |
) | |
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | |
parser.add_argument( | |
"--opset", | |
default=14, | |
type=int, | |
help="The version of the ONNX operator set to use.", | |
) | |
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") | |
args = parser.parse_args() | |
convert_models(args.model_path, args.controlnet_path, args.output_path, args.opset, args.fp16, args.sd_xl) | |