Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer | |
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtSigmaPipeline, Transformer2DModel | |
ckpt_id = "PixArt-alpha" | |
# https://github.com/PixArt-alpha/PixArt-sigma/blob/dd087141864e30ec44f12cb7448dd654be065e88/scripts/inference.py#L158 | |
interpolation_scale = {256: 0.5, 512: 1, 1024: 2, 2048: 4} | |
def main(args): | |
all_state_dict = torch.load(args.orig_ckpt_path) | |
state_dict = all_state_dict.pop("state_dict") | |
converted_state_dict = {} | |
# Patch embeddings. | |
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight") | |
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias") | |
# Caption projection. | |
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight") | |
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias") | |
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight") | |
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias") | |
# AdaLN-single LN | |
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop( | |
"t_embedder.mlp.0.weight" | |
) | |
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias") | |
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop( | |
"t_embedder.mlp.2.weight" | |
) | |
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias") | |
if args.micro_condition: | |
# Resolution. | |
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop( | |
"csize_embedder.mlp.0.weight" | |
) | |
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop( | |
"csize_embedder.mlp.0.bias" | |
) | |
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop( | |
"csize_embedder.mlp.2.weight" | |
) | |
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop( | |
"csize_embedder.mlp.2.bias" | |
) | |
# Aspect ratio. | |
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop( | |
"ar_embedder.mlp.0.weight" | |
) | |
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop( | |
"ar_embedder.mlp.0.bias" | |
) | |
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop( | |
"ar_embedder.mlp.2.weight" | |
) | |
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop( | |
"ar_embedder.mlp.2.bias" | |
) | |
# Shared norm. | |
converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight") | |
converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias") | |
for depth in range(28): | |
# Transformer blocks. | |
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop( | |
f"blocks.{depth}.scale_shift_table" | |
) | |
# Attention is all you need 🤘 | |
# Self attention. | |
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0) | |
q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias | |
# Projection. | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop( | |
f"blocks.{depth}.attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop( | |
f"blocks.{depth}.attn.proj.bias" | |
) | |
if args.qk_norm: | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.weight"] = state_dict.pop( | |
f"blocks.{depth}.attn.q_norm.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.bias"] = state_dict.pop( | |
f"blocks.{depth}.attn.q_norm.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.weight"] = state_dict.pop( | |
f"blocks.{depth}.attn.k_norm.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.bias"] = state_dict.pop( | |
f"blocks.{depth}.attn.k_norm.bias" | |
) | |
# Feed-forward. | |
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop( | |
f"blocks.{depth}.mlp.fc1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop( | |
f"blocks.{depth}.mlp.fc1.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop( | |
f"blocks.{depth}.mlp.fc2.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop( | |
f"blocks.{depth}.mlp.fc2.bias" | |
) | |
# Cross-attention. | |
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight") | |
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias") | |
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0) | |
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0) | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop( | |
f"blocks.{depth}.cross_attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop( | |
f"blocks.{depth}.cross_attn.proj.bias" | |
) | |
# Final block. | |
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight") | |
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias") | |
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table") | |
# PixArt XL/2 | |
transformer = Transformer2DModel( | |
sample_size=args.image_size // 8, | |
num_layers=28, | |
attention_head_dim=72, | |
in_channels=4, | |
out_channels=8, | |
patch_size=2, | |
attention_bias=True, | |
num_attention_heads=16, | |
cross_attention_dim=1152, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
norm_type="ada_norm_single", | |
norm_elementwise_affine=False, | |
norm_eps=1e-6, | |
caption_channels=4096, | |
interpolation_scale=interpolation_scale[args.image_size], | |
use_additional_conditions=args.micro_condition, | |
) | |
transformer.load_state_dict(converted_state_dict, strict=True) | |
assert transformer.pos_embed.pos_embed is not None | |
try: | |
state_dict.pop("y_embedder.y_embedding") | |
state_dict.pop("pos_embed") | |
except Exception as e: | |
print(f"Skipping {str(e)}") | |
pass | |
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}" | |
num_model_params = sum(p.numel() for p in transformer.parameters()) | |
print(f"Total number of transformer parameters: {num_model_params}") | |
if args.only_transformer: | |
transformer.save_pretrained(os.path.join(args.dump_path, "transformer")) | |
else: | |
# pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae") | |
scheduler = DPMSolverMultistepScheduler() | |
tokenizer = T5Tokenizer.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer") | |
text_encoder = T5EncoderModel.from_pretrained( | |
f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder" | |
) | |
pipeline = PixArtSigmaPipeline( | |
tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler | |
) | |
pipeline.save_pretrained(args.dump_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--micro_condition", action="store_true", help="If use Micro-condition in PixArtMS structure during training." | |
) | |
parser.add_argument("--qk_norm", action="store_true", help="If use qk norm during training.") | |
parser.add_argument( | |
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--image_size", | |
default=1024, | |
type=int, | |
choices=[256, 512, 1024, 2048], | |
required=False, | |
help="Image size of pretrained model, 256, 512, 1024, or 2048.", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") | |
parser.add_argument("--only_transformer", default=True, type=bool, required=True) | |
args = parser.parse_args() | |
main(args) | |