Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import torch | |
from diffusers import ( | |
CMStochasticIterativeScheduler, | |
ConsistencyModelPipeline, | |
UNet2DModel, | |
) | |
TEST_UNET_CONFIG = { | |
"sample_size": 32, | |
"in_channels": 3, | |
"out_channels": 3, | |
"layers_per_block": 2, | |
"num_class_embeds": 1000, | |
"block_out_channels": [32, 64], | |
"attention_head_dim": 8, | |
"down_block_types": [ | |
"ResnetDownsampleBlock2D", | |
"AttnDownBlock2D", | |
], | |
"up_block_types": [ | |
"AttnUpBlock2D", | |
"ResnetUpsampleBlock2D", | |
], | |
"resnet_time_scale_shift": "scale_shift", | |
"attn_norm_num_groups": 32, | |
"upsample_type": "resnet", | |
"downsample_type": "resnet", | |
} | |
IMAGENET_64_UNET_CONFIG = { | |
"sample_size": 64, | |
"in_channels": 3, | |
"out_channels": 3, | |
"layers_per_block": 3, | |
"num_class_embeds": 1000, | |
"block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], | |
"attention_head_dim": 64, | |
"down_block_types": [ | |
"ResnetDownsampleBlock2D", | |
"AttnDownBlock2D", | |
"AttnDownBlock2D", | |
"AttnDownBlock2D", | |
], | |
"up_block_types": [ | |
"AttnUpBlock2D", | |
"AttnUpBlock2D", | |
"AttnUpBlock2D", | |
"ResnetUpsampleBlock2D", | |
], | |
"resnet_time_scale_shift": "scale_shift", | |
"attn_norm_num_groups": 32, | |
"upsample_type": "resnet", | |
"downsample_type": "resnet", | |
} | |
LSUN_256_UNET_CONFIG = { | |
"sample_size": 256, | |
"in_channels": 3, | |
"out_channels": 3, | |
"layers_per_block": 2, | |
"num_class_embeds": None, | |
"block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], | |
"attention_head_dim": 64, | |
"down_block_types": [ | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"AttnDownBlock2D", | |
"AttnDownBlock2D", | |
"AttnDownBlock2D", | |
], | |
"up_block_types": [ | |
"AttnUpBlock2D", | |
"AttnUpBlock2D", | |
"AttnUpBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
], | |
"resnet_time_scale_shift": "default", | |
"upsample_type": "resnet", | |
"downsample_type": "resnet", | |
} | |
CD_SCHEDULER_CONFIG = { | |
"num_train_timesteps": 40, | |
"sigma_min": 0.002, | |
"sigma_max": 80.0, | |
} | |
CT_IMAGENET_64_SCHEDULER_CONFIG = { | |
"num_train_timesteps": 201, | |
"sigma_min": 0.002, | |
"sigma_max": 80.0, | |
} | |
CT_LSUN_256_SCHEDULER_CONFIG = { | |
"num_train_timesteps": 151, | |
"sigma_min": 0.002, | |
"sigma_max": 80.0, | |
} | |
def str2bool(v): | |
""" | |
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse | |
""" | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("boolean value expected") | |
def convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=False): | |
new_checkpoint[f"{new_prefix}.norm1.weight"] = checkpoint[f"{old_prefix}.in_layers.0.weight"] | |
new_checkpoint[f"{new_prefix}.norm1.bias"] = checkpoint[f"{old_prefix}.in_layers.0.bias"] | |
new_checkpoint[f"{new_prefix}.conv1.weight"] = checkpoint[f"{old_prefix}.in_layers.2.weight"] | |
new_checkpoint[f"{new_prefix}.conv1.bias"] = checkpoint[f"{old_prefix}.in_layers.2.bias"] | |
new_checkpoint[f"{new_prefix}.time_emb_proj.weight"] = checkpoint[f"{old_prefix}.emb_layers.1.weight"] | |
new_checkpoint[f"{new_prefix}.time_emb_proj.bias"] = checkpoint[f"{old_prefix}.emb_layers.1.bias"] | |
new_checkpoint[f"{new_prefix}.norm2.weight"] = checkpoint[f"{old_prefix}.out_layers.0.weight"] | |
new_checkpoint[f"{new_prefix}.norm2.bias"] = checkpoint[f"{old_prefix}.out_layers.0.bias"] | |
new_checkpoint[f"{new_prefix}.conv2.weight"] = checkpoint[f"{old_prefix}.out_layers.3.weight"] | |
new_checkpoint[f"{new_prefix}.conv2.bias"] = checkpoint[f"{old_prefix}.out_layers.3.bias"] | |
if has_skip: | |
new_checkpoint[f"{new_prefix}.conv_shortcut.weight"] = checkpoint[f"{old_prefix}.skip_connection.weight"] | |
new_checkpoint[f"{new_prefix}.conv_shortcut.bias"] = checkpoint[f"{old_prefix}.skip_connection.bias"] | |
return new_checkpoint | |
def convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_dim=None): | |
weight_q, weight_k, weight_v = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3, dim=0) | |
bias_q, bias_k, bias_v = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3, dim=0) | |
new_checkpoint[f"{new_prefix}.group_norm.weight"] = checkpoint[f"{old_prefix}.norm.weight"] | |
new_checkpoint[f"{new_prefix}.group_norm.bias"] = checkpoint[f"{old_prefix}.norm.bias"] | |
new_checkpoint[f"{new_prefix}.to_q.weight"] = weight_q.squeeze(-1).squeeze(-1) | |
new_checkpoint[f"{new_prefix}.to_q.bias"] = bias_q.squeeze(-1).squeeze(-1) | |
new_checkpoint[f"{new_prefix}.to_k.weight"] = weight_k.squeeze(-1).squeeze(-1) | |
new_checkpoint[f"{new_prefix}.to_k.bias"] = bias_k.squeeze(-1).squeeze(-1) | |
new_checkpoint[f"{new_prefix}.to_v.weight"] = weight_v.squeeze(-1).squeeze(-1) | |
new_checkpoint[f"{new_prefix}.to_v.bias"] = bias_v.squeeze(-1).squeeze(-1) | |
new_checkpoint[f"{new_prefix}.to_out.0.weight"] = ( | |
checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1).squeeze(-1) | |
) | |
new_checkpoint[f"{new_prefix}.to_out.0.bias"] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1).squeeze(-1) | |
return new_checkpoint | |
def con_pt_to_diffuser(checkpoint_path: str, unet_config): | |
checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"] | |
if unet_config["num_class_embeds"] is not None: | |
new_checkpoint["class_embedding.weight"] = checkpoint["label_emb.weight"] | |
new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"] | |
down_block_types = unet_config["down_block_types"] | |
layers_per_block = unet_config["layers_per_block"] | |
attention_head_dim = unet_config["attention_head_dim"] | |
channels_list = unet_config["block_out_channels"] | |
current_layer = 1 | |
prev_channels = channels_list[0] | |
for i, layer_type in enumerate(down_block_types): | |
current_channels = channels_list[i] | |
downsample_block_has_skip = current_channels != prev_channels | |
if layer_type == "ResnetDownsampleBlock2D": | |
for j in range(layers_per_block): | |
new_prefix = f"down_blocks.{i}.resnets.{j}" | |
old_prefix = f"input_blocks.{current_layer}.0" | |
has_skip = True if j == 0 and downsample_block_has_skip else False | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip) | |
current_layer += 1 | |
elif layer_type == "AttnDownBlock2D": | |
for j in range(layers_per_block): | |
new_prefix = f"down_blocks.{i}.resnets.{j}" | |
old_prefix = f"input_blocks.{current_layer}.0" | |
has_skip = True if j == 0 and downsample_block_has_skip else False | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip) | |
new_prefix = f"down_blocks.{i}.attentions.{j}" | |
old_prefix = f"input_blocks.{current_layer}.1" | |
new_checkpoint = convert_attention( | |
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim | |
) | |
current_layer += 1 | |
if i != len(down_block_types) - 1: | |
new_prefix = f"down_blocks.{i}.downsamplers.0" | |
old_prefix = f"input_blocks.{current_layer}.0" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix) | |
current_layer += 1 | |
prev_channels = current_channels | |
# hardcoded the mid-block for now | |
new_prefix = "mid_block.resnets.0" | |
old_prefix = "middle_block.0" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix) | |
new_prefix = "mid_block.attentions.0" | |
old_prefix = "middle_block.1" | |
new_checkpoint = convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim) | |
new_prefix = "mid_block.resnets.1" | |
old_prefix = "middle_block.2" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix) | |
current_layer = 0 | |
up_block_types = unet_config["up_block_types"] | |
for i, layer_type in enumerate(up_block_types): | |
if layer_type == "ResnetUpsampleBlock2D": | |
for j in range(layers_per_block + 1): | |
new_prefix = f"up_blocks.{i}.resnets.{j}" | |
old_prefix = f"output_blocks.{current_layer}.0" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True) | |
current_layer += 1 | |
if i != len(up_block_types) - 1: | |
new_prefix = f"up_blocks.{i}.upsamplers.0" | |
old_prefix = f"output_blocks.{current_layer-1}.1" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix) | |
elif layer_type == "AttnUpBlock2D": | |
for j in range(layers_per_block + 1): | |
new_prefix = f"up_blocks.{i}.resnets.{j}" | |
old_prefix = f"output_blocks.{current_layer}.0" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True) | |
new_prefix = f"up_blocks.{i}.attentions.{j}" | |
old_prefix = f"output_blocks.{current_layer}.1" | |
new_checkpoint = convert_attention( | |
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim | |
) | |
current_layer += 1 | |
if i != len(up_block_types) - 1: | |
new_prefix = f"up_blocks.{i}.upsamplers.0" | |
old_prefix = f"output_blocks.{current_layer-1}.2" | |
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix) | |
new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"] | |
return new_checkpoint | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") | |
parser.add_argument( | |
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." | |
) | |
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") | |
args = parser.parse_args() | |
args.class_cond = str2bool(args.class_cond) | |
ckpt_name = os.path.basename(args.unet_path) | |
print(f"Checkpoint: {ckpt_name}") | |
# Get U-Net config | |
if "imagenet64" in ckpt_name: | |
unet_config = IMAGENET_64_UNET_CONFIG | |
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): | |
unet_config = LSUN_256_UNET_CONFIG | |
elif "test" in ckpt_name: | |
unet_config = TEST_UNET_CONFIG | |
else: | |
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") | |
if not args.class_cond: | |
unet_config["num_class_embeds"] = None | |
converted_unet_ckpt = con_pt_to_diffuser(args.unet_path, unet_config) | |
image_unet = UNet2DModel(**unet_config) | |
image_unet.load_state_dict(converted_unet_ckpt) | |
# Get scheduler config | |
if "cd" in ckpt_name or "test" in ckpt_name: | |
scheduler_config = CD_SCHEDULER_CONFIG | |
elif "ct" in ckpt_name and "imagenet64" in ckpt_name: | |
scheduler_config = CT_IMAGENET_64_SCHEDULER_CONFIG | |
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): | |
scheduler_config = CT_LSUN_256_SCHEDULER_CONFIG | |
else: | |
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") | |
cm_scheduler = CMStochasticIterativeScheduler(**scheduler_config) | |
consistency_model = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) | |
consistency_model.save_pretrained(args.dump_path) | |