Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This script requires you to build `LAVIS` from source, since the pip version doesn't have BLIP Diffusion. Follow instructions here: https://github.com/salesforce/LAVIS/tree/main. | |
""" | |
import argparse | |
import os | |
import tempfile | |
import torch | |
from lavis.models import load_model_and_preprocess | |
from transformers import CLIPTokenizer | |
from transformers.models.blip_2.configuration_blip_2 import Blip2Config | |
from diffusers import ( | |
AutoencoderKL, | |
PNDMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines import BlipDiffusionPipeline | |
from diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor | |
from diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel | |
from diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel | |
BLIP2_CONFIG = { | |
"vision_config": { | |
"hidden_size": 1024, | |
"num_hidden_layers": 23, | |
"num_attention_heads": 16, | |
"image_size": 224, | |
"patch_size": 14, | |
"intermediate_size": 4096, | |
"hidden_act": "quick_gelu", | |
}, | |
"qformer_config": { | |
"cross_attention_frequency": 1, | |
"encoder_hidden_size": 1024, | |
"vocab_size": 30523, | |
}, | |
"num_query_tokens": 16, | |
} | |
blip2config = Blip2Config(**BLIP2_CONFIG) | |
def qformer_model_from_original_config(): | |
qformer = Blip2QFormerModel(blip2config) | |
return qformer | |
def embeddings_from_original_checkpoint(model, diffuser_embeddings_prefix, original_embeddings_prefix): | |
embeddings = {} | |
embeddings.update( | |
{ | |
f"{diffuser_embeddings_prefix}.word_embeddings.weight": model[ | |
f"{original_embeddings_prefix}.word_embeddings.weight" | |
] | |
} | |
) | |
embeddings.update( | |
{ | |
f"{diffuser_embeddings_prefix}.position_embeddings.weight": model[ | |
f"{original_embeddings_prefix}.position_embeddings.weight" | |
] | |
} | |
) | |
embeddings.update( | |
{f"{diffuser_embeddings_prefix}.LayerNorm.weight": model[f"{original_embeddings_prefix}.LayerNorm.weight"]} | |
) | |
embeddings.update( | |
{f"{diffuser_embeddings_prefix}.LayerNorm.bias": model[f"{original_embeddings_prefix}.LayerNorm.bias"]} | |
) | |
return embeddings | |
def proj_layer_from_original_checkpoint(model, diffuser_proj_prefix, original_proj_prefix): | |
proj_layer = {} | |
proj_layer.update({f"{diffuser_proj_prefix}.dense1.weight": model[f"{original_proj_prefix}.dense1.weight"]}) | |
proj_layer.update({f"{diffuser_proj_prefix}.dense1.bias": model[f"{original_proj_prefix}.dense1.bias"]}) | |
proj_layer.update({f"{diffuser_proj_prefix}.dense2.weight": model[f"{original_proj_prefix}.dense2.weight"]}) | |
proj_layer.update({f"{diffuser_proj_prefix}.dense2.bias": model[f"{original_proj_prefix}.dense2.bias"]}) | |
proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.weight": model[f"{original_proj_prefix}.LayerNorm.weight"]}) | |
proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.bias": model[f"{original_proj_prefix}.LayerNorm.bias"]}) | |
return proj_layer | |
def attention_from_original_checkpoint(model, diffuser_attention_prefix, original_attention_prefix): | |
attention = {} | |
attention.update( | |
{ | |
f"{diffuser_attention_prefix}.attention.query.weight": model[ | |
f"{original_attention_prefix}.self.query.weight" | |
] | |
} | |
) | |
attention.update( | |
{f"{diffuser_attention_prefix}.attention.query.bias": model[f"{original_attention_prefix}.self.query.bias"]} | |
) | |
attention.update( | |
{f"{diffuser_attention_prefix}.attention.key.weight": model[f"{original_attention_prefix}.self.key.weight"]} | |
) | |
attention.update( | |
{f"{diffuser_attention_prefix}.attention.key.bias": model[f"{original_attention_prefix}.self.key.bias"]} | |
) | |
attention.update( | |
{ | |
f"{diffuser_attention_prefix}.attention.value.weight": model[ | |
f"{original_attention_prefix}.self.value.weight" | |
] | |
} | |
) | |
attention.update( | |
{f"{diffuser_attention_prefix}.attention.value.bias": model[f"{original_attention_prefix}.self.value.bias"]} | |
) | |
attention.update( | |
{f"{diffuser_attention_prefix}.output.dense.weight": model[f"{original_attention_prefix}.output.dense.weight"]} | |
) | |
attention.update( | |
{f"{diffuser_attention_prefix}.output.dense.bias": model[f"{original_attention_prefix}.output.dense.bias"]} | |
) | |
attention.update( | |
{ | |
f"{diffuser_attention_prefix}.output.LayerNorm.weight": model[ | |
f"{original_attention_prefix}.output.LayerNorm.weight" | |
] | |
} | |
) | |
attention.update( | |
{ | |
f"{diffuser_attention_prefix}.output.LayerNorm.bias": model[ | |
f"{original_attention_prefix}.output.LayerNorm.bias" | |
] | |
} | |
) | |
return attention | |
def output_layers_from_original_checkpoint(model, diffuser_output_prefix, original_output_prefix): | |
output_layers = {} | |
output_layers.update({f"{diffuser_output_prefix}.dense.weight": model[f"{original_output_prefix}.dense.weight"]}) | |
output_layers.update({f"{diffuser_output_prefix}.dense.bias": model[f"{original_output_prefix}.dense.bias"]}) | |
output_layers.update( | |
{f"{diffuser_output_prefix}.LayerNorm.weight": model[f"{original_output_prefix}.LayerNorm.weight"]} | |
) | |
output_layers.update( | |
{f"{diffuser_output_prefix}.LayerNorm.bias": model[f"{original_output_prefix}.LayerNorm.bias"]} | |
) | |
return output_layers | |
def encoder_from_original_checkpoint(model, diffuser_encoder_prefix, original_encoder_prefix): | |
encoder = {} | |
for i in range(blip2config.qformer_config.num_hidden_layers): | |
encoder.update( | |
attention_from_original_checkpoint( | |
model, f"{diffuser_encoder_prefix}.{i}.attention", f"{original_encoder_prefix}.{i}.attention" | |
) | |
) | |
encoder.update( | |
attention_from_original_checkpoint( | |
model, f"{diffuser_encoder_prefix}.{i}.crossattention", f"{original_encoder_prefix}.{i}.crossattention" | |
) | |
) | |
encoder.update( | |
{ | |
f"{diffuser_encoder_prefix}.{i}.intermediate.dense.weight": model[ | |
f"{original_encoder_prefix}.{i}.intermediate.dense.weight" | |
] | |
} | |
) | |
encoder.update( | |
{ | |
f"{diffuser_encoder_prefix}.{i}.intermediate.dense.bias": model[ | |
f"{original_encoder_prefix}.{i}.intermediate.dense.bias" | |
] | |
} | |
) | |
encoder.update( | |
{ | |
f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.weight": model[ | |
f"{original_encoder_prefix}.{i}.intermediate_query.dense.weight" | |
] | |
} | |
) | |
encoder.update( | |
{ | |
f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.bias": model[ | |
f"{original_encoder_prefix}.{i}.intermediate_query.dense.bias" | |
] | |
} | |
) | |
encoder.update( | |
output_layers_from_original_checkpoint( | |
model, f"{diffuser_encoder_prefix}.{i}.output", f"{original_encoder_prefix}.{i}.output" | |
) | |
) | |
encoder.update( | |
output_layers_from_original_checkpoint( | |
model, f"{diffuser_encoder_prefix}.{i}.output_query", f"{original_encoder_prefix}.{i}.output_query" | |
) | |
) | |
return encoder | |
def visual_encoder_layer_from_original_checkpoint(model, diffuser_prefix, original_prefix): | |
visual_encoder_layer = {} | |
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.weight": model[f"{original_prefix}.ln_1.weight"]}) | |
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.bias": model[f"{original_prefix}.ln_1.bias"]}) | |
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.weight": model[f"{original_prefix}.ln_2.weight"]}) | |
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.bias": model[f"{original_prefix}.ln_2.bias"]}) | |
visual_encoder_layer.update( | |
{f"{diffuser_prefix}.self_attn.qkv.weight": model[f"{original_prefix}.attn.in_proj_weight"]} | |
) | |
visual_encoder_layer.update( | |
{f"{diffuser_prefix}.self_attn.qkv.bias": model[f"{original_prefix}.attn.in_proj_bias"]} | |
) | |
visual_encoder_layer.update( | |
{f"{diffuser_prefix}.self_attn.projection.weight": model[f"{original_prefix}.attn.out_proj.weight"]} | |
) | |
visual_encoder_layer.update( | |
{f"{diffuser_prefix}.self_attn.projection.bias": model[f"{original_prefix}.attn.out_proj.bias"]} | |
) | |
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.weight": model[f"{original_prefix}.mlp.c_fc.weight"]}) | |
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.bias": model[f"{original_prefix}.mlp.c_fc.bias"]}) | |
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.weight": model[f"{original_prefix}.mlp.c_proj.weight"]}) | |
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.bias": model[f"{original_prefix}.mlp.c_proj.bias"]}) | |
return visual_encoder_layer | |
def visual_encoder_from_original_checkpoint(model, diffuser_prefix, original_prefix): | |
visual_encoder = {} | |
visual_encoder.update( | |
{ | |
f"{diffuser_prefix}.embeddings.class_embedding": model[f"{original_prefix}.class_embedding"] | |
.unsqueeze(0) | |
.unsqueeze(0) | |
} | |
) | |
visual_encoder.update( | |
{ | |
f"{diffuser_prefix}.embeddings.position_embedding": model[ | |
f"{original_prefix}.positional_embedding" | |
].unsqueeze(0) | |
} | |
) | |
visual_encoder.update( | |
{f"{diffuser_prefix}.embeddings.patch_embedding.weight": model[f"{original_prefix}.conv1.weight"]} | |
) | |
visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.weight": model[f"{original_prefix}.ln_pre.weight"]}) | |
visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.bias": model[f"{original_prefix}.ln_pre.bias"]}) | |
for i in range(blip2config.vision_config.num_hidden_layers): | |
visual_encoder.update( | |
visual_encoder_layer_from_original_checkpoint( | |
model, f"{diffuser_prefix}.encoder.layers.{i}", f"{original_prefix}.transformer.resblocks.{i}" | |
) | |
) | |
visual_encoder.update({f"{diffuser_prefix}.post_layernorm.weight": model["blip.ln_vision.weight"]}) | |
visual_encoder.update({f"{diffuser_prefix}.post_layernorm.bias": model["blip.ln_vision.bias"]}) | |
return visual_encoder | |
def qformer_original_checkpoint_to_diffusers_checkpoint(model): | |
qformer_checkpoint = {} | |
qformer_checkpoint.update(embeddings_from_original_checkpoint(model, "embeddings", "blip.Qformer.bert.embeddings")) | |
qformer_checkpoint.update({"query_tokens": model["blip.query_tokens"]}) | |
qformer_checkpoint.update(proj_layer_from_original_checkpoint(model, "proj_layer", "proj_layer")) | |
qformer_checkpoint.update( | |
encoder_from_original_checkpoint(model, "encoder.layer", "blip.Qformer.bert.encoder.layer") | |
) | |
qformer_checkpoint.update(visual_encoder_from_original_checkpoint(model, "visual_encoder", "blip.visual_encoder")) | |
return qformer_checkpoint | |
def get_qformer(model): | |
print("loading qformer") | |
qformer = qformer_model_from_original_config() | |
qformer_diffusers_checkpoint = qformer_original_checkpoint_to_diffusers_checkpoint(model) | |
load_checkpoint_to_model(qformer_diffusers_checkpoint, qformer) | |
print("done loading qformer") | |
return qformer | |
def load_checkpoint_to_model(checkpoint, model): | |
with tempfile.NamedTemporaryFile(delete=False) as file: | |
torch.save(checkpoint, file.name) | |
del checkpoint | |
model.load_state_dict(torch.load(file.name), strict=False) | |
os.remove(file.name) | |
def save_blip_diffusion_model(model, args): | |
qformer = get_qformer(model) | |
qformer.eval() | |
text_encoder = ContextCLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") | |
vae.eval() | |
text_encoder.eval() | |
scheduler = PNDMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
set_alpha_to_one=False, | |
skip_prk_steps=True, | |
) | |
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer") | |
image_processor = BlipImageProcessor() | |
blip_diffusion = BlipDiffusionPipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=vae, | |
unet=unet, | |
scheduler=scheduler, | |
qformer=qformer, | |
image_processor=image_processor, | |
) | |
blip_diffusion.save_pretrained(args.checkpoint_path) | |
def main(args): | |
model, _, _ = load_model_and_preprocess("blip_diffusion", "base", device="cpu", is_eval=True) | |
save_blip_diffusion_model(model.state_dict(), args) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") | |
args = parser.parse_args() | |
main(args) | |