Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Ported from Paella | |
""" | |
import torch | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
# Discriminator model ported from Paella https://github.com/dome272/Paella/blob/main/src_distributed/vqgan.py | |
class Discriminator(ModelMixin, ConfigMixin): | |
def __init__(self, in_channels=3, cond_channels=0, hidden_channels=512, depth=6): | |
super().__init__() | |
d = max(depth - 3, 3) | |
layers = [ | |
nn.utils.spectral_norm( | |
nn.Conv2d(in_channels, hidden_channels // (2**d), kernel_size=3, stride=2, padding=1) | |
), | |
nn.LeakyReLU(0.2), | |
] | |
for i in range(depth - 1): | |
c_in = hidden_channels // (2 ** max((d - i), 0)) | |
c_out = hidden_channels // (2 ** max((d - 1 - i), 0)) | |
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) | |
layers.append(nn.InstanceNorm2d(c_out)) | |
layers.append(nn.LeakyReLU(0.2)) | |
self.encoder = nn.Sequential(*layers) | |
self.shuffle = nn.Conv2d( | |
(hidden_channels + cond_channels) if cond_channels > 0 else hidden_channels, 1, kernel_size=1 | |
) | |
self.logits = nn.Sigmoid() | |
def forward(self, x, cond=None): | |
x = self.encoder(x) | |
if cond is not None: | |
cond = cond.view( | |
cond.size(0), | |
cond.size(1), | |
1, | |
1, | |
).expand(-1, -1, x.size(-2), x.size(-1)) | |
x = torch.cat([x, cond], dim=1) | |
x = self.shuffle(x) | |
x = self.logits(x) | |
return x | |