Spaces:
Runtime error
Runtime error
| import inspect | |
| from typing import Callable, List, Optional, Union | |
| import torch | |
| from PIL import Image | |
| from retriever import Retriever, normalize_images, preprocess_images | |
| from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DiffusionPipeline, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| ImagePipelineOutput, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.pipelines.pipeline_utils import StableDiffusionMixin | |
| from diffusers.utils import logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class RDMPipeline(DiffusionPipeline, StableDiffusionMixin): | |
| r""" | |
| Pipeline for text-to-image generation using Retrieval Augmented Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| clip ([`CLIPModel`]): | |
| Frozen CLIP model. Retrieval Augmented Diffusion uses the CLIP model, specifically the | |
| [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| clip: CLIPModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| feature_extractor: CLIPFeatureExtractor, | |
| retriever: Optional[Retriever] = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| clip=clip, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| ) | |
| # Copy from statement here and all the methods we take from stable_diffusion_pipeline | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.retriever = retriever | |
| def _encode_prompt(self, prompt): | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| if text_input_ids.shape[-1] > self.tokenizer.model_max_length: | |
| removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
| prompt_embeds = self.clip.get_text_features(text_input_ids.to(self.device)) | |
| prompt_embeds = prompt_embeds / torch.linalg.norm(prompt_embeds, dim=-1, keepdim=True) | |
| prompt_embeds = prompt_embeds[:, None, :] | |
| return prompt_embeds | |
| def _encode_image(self, retrieved_images, batch_size): | |
| if len(retrieved_images[0]) == 0: | |
| return None | |
| for i in range(len(retrieved_images)): | |
| retrieved_images[i] = normalize_images(retrieved_images[i]) | |
| retrieved_images[i] = preprocess_images(retrieved_images[i], self.feature_extractor).to( | |
| self.clip.device, dtype=self.clip.dtype | |
| ) | |
| _, c, h, w = retrieved_images[0].shape | |
| retrieved_images = torch.reshape(torch.cat(retrieved_images, dim=0), (-1, c, h, w)) | |
| image_embeddings = self.clip.get_image_features(retrieved_images) | |
| image_embeddings = image_embeddings / torch.linalg.norm(image_embeddings, dim=-1, keepdim=True) | |
| _, d = image_embeddings.shape | |
| image_embeddings = torch.reshape(image_embeddings, (batch_size, -1, d)) | |
| return image_embeddings | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def retrieve_images(self, retrieved_images, prompt_embeds, knn=10): | |
| if self.retriever is not None: | |
| additional_images = self.retriever.retrieve_imgs_batch(prompt_embeds[:, 0].cpu(), knn).total_examples | |
| for i in range(len(retrieved_images)): | |
| retrieved_images[i] += additional_images[i][self.retriever.config.image_column] | |
| return retrieved_images | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| retrieved_images: Optional[List[Image.Image]] = None, | |
| height: int = 768, | |
| width: int = 768, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| knn: Optional[int] = 10, | |
| **kwargs, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
| deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if | |
| `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the | |
| generated images. | |
| """ | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if retrieved_images is not None: | |
| retrieved_images = [retrieved_images for _ in range(batch_size)] | |
| else: | |
| retrieved_images = [[] for _ in range(batch_size)] | |
| device = self._execution_device | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt_embeds is None: | |
| prompt_embeds = self._encode_prompt(prompt) | |
| retrieved_images = self.retrieve_images(retrieved_images, prompt_embeds, knn=knn) | |
| image_embeddings = self._encode_image(retrieved_images, batch_size) | |
| if image_embeddings is not None: | |
| prompt_embeds = torch.cat([prompt_embeds, image_embeddings], dim=1) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_embeddings = torch.zeros_like(prompt_embeds).to(prompt_embeds.device) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([uncond_embeddings, prompt_embeds]) | |
| # get the initial random noise unless the user supplied it | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| # Some schedulers like PNDM have timesteps as arrays | |
| # It's more optimized to move all timesteps to correct device beforehand | |
| timesteps_tensor = self.scheduler.timesteps.to(self.device) | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=[True] * image.shape[0] | |
| ) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |