Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 Custom Diffusion authors and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import itertools | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
import warnings | |
from pathlib import Path | |
import numpy as np | |
import safetensors | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from huggingface_hub import HfApi, create_repo | |
from huggingface_hub.utils import insecure_hashlib | |
from packaging import version | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, PretrainedConfig | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.loaders import AttnProcsLayers | |
from diffusers.models.attention_processor import ( | |
CustomDiffusionAttnProcessor, | |
CustomDiffusionAttnProcessor2_0, | |
CustomDiffusionXFormersAttnProcessor, | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version, is_wandb_available | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.import_utils import is_xformers_available | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.30.0.dev0") | |
logger = get_logger(__name__) | |
def freeze_params(params): | |
for param in params: | |
param.requires_grad = False | |
def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None): | |
img_str = "" | |
for i, image in enumerate(images): | |
image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
img_str += f"![img_{i}](./image_{i}.png)\n" | |
model_description = f""" | |
# Custom Diffusion - {repo_id} | |
These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n | |
{img_str} | |
\nFor more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion). | |
""" | |
model_card = load_or_create_model_card( | |
repo_id_or_path=repo_id, | |
from_training=True, | |
license="creativeml-openrail-m", | |
base_model=base_model, | |
prompt=prompt, | |
model_description=model_description, | |
inference=True, | |
) | |
tags = [ | |
"text-to-image", | |
"diffusers", | |
"stable-diffusion", | |
"stable-diffusion-diffusers", | |
"custom-diffusion", | |
"diffusers-training", | |
] | |
model_card = populate_model_card(model_card, tags=tags) | |
model_card.save(os.path.join(repo_folder, "README.md")) | |
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, | |
subfolder="text_encoder", | |
revision=revision, | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "RobertaSeriesModelWithTransformation": | |
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation | |
return RobertaSeriesModelWithTransformation | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def collate_fn(examples, with_prior_preservation): | |
input_ids = [example["instance_prompt_ids"] for example in examples] | |
pixel_values = [example["instance_images"] for example in examples] | |
mask = [example["mask"] for example in examples] | |
# Concat class and instance examples for prior preservation. | |
# We do this to avoid doing two forward passes. | |
if with_prior_preservation: | |
input_ids += [example["class_prompt_ids"] for example in examples] | |
pixel_values += [example["class_images"] for example in examples] | |
mask += [example["class_mask"] for example in examples] | |
input_ids = torch.cat(input_ids, dim=0) | |
pixel_values = torch.stack(pixel_values) | |
mask = torch.stack(mask) | |
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
mask = mask.to(memory_format=torch.contiguous_format).float() | |
batch = {"input_ids": input_ids, "pixel_values": pixel_values, "mask": mask.unsqueeze(1)} | |
return batch | |
class PromptDataset(Dataset): | |
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" | |
def __init__(self, prompt, num_samples): | |
self.prompt = prompt | |
self.num_samples = num_samples | |
def __len__(self): | |
return self.num_samples | |
def __getitem__(self, index): | |
example = {} | |
example["prompt"] = self.prompt | |
example["index"] = index | |
return example | |
class CustomDiffusionDataset(Dataset): | |
""" | |
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
It pre-processes the images and the tokenizes prompts. | |
""" | |
def __init__( | |
self, | |
concepts_list, | |
tokenizer, | |
size=512, | |
mask_size=64, | |
center_crop=False, | |
with_prior_preservation=False, | |
num_class_images=200, | |
hflip=False, | |
aug=True, | |
): | |
self.size = size | |
self.mask_size = mask_size | |
self.center_crop = center_crop | |
self.tokenizer = tokenizer | |
self.interpolation = Image.BILINEAR | |
self.aug = aug | |
self.instance_images_path = [] | |
self.class_images_path = [] | |
self.with_prior_preservation = with_prior_preservation | |
for concept in concepts_list: | |
inst_img_path = [ | |
(x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file() | |
] | |
self.instance_images_path.extend(inst_img_path) | |
if with_prior_preservation: | |
class_data_root = Path(concept["class_data_dir"]) | |
if os.path.isdir(class_data_root): | |
class_images_path = list(class_data_root.iterdir()) | |
class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))] | |
else: | |
with open(class_data_root, "r") as f: | |
class_images_path = f.read().splitlines() | |
with open(concept["class_prompt"], "r") as f: | |
class_prompt = f.read().splitlines() | |
class_img_path = list(zip(class_images_path, class_prompt)) | |
self.class_images_path.extend(class_img_path[:num_class_images]) | |
random.shuffle(self.instance_images_path) | |
self.num_instance_images = len(self.instance_images_path) | |
self.num_class_images = len(self.class_images_path) | |
self._length = max(self.num_class_images, self.num_instance_images) | |
self.flip = transforms.RandomHorizontalFlip(0.5 * hflip) | |
self.image_transforms = transforms.Compose( | |
[ | |
self.flip, | |
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def __len__(self): | |
return self._length | |
def preprocess(self, image, scale, resample): | |
outer, inner = self.size, scale | |
factor = self.size // self.mask_size | |
if scale > self.size: | |
outer, inner = scale, self.size | |
top, left = np.random.randint(0, outer - inner + 1), np.random.randint(0, outer - inner + 1) | |
image = image.resize((scale, scale), resample=resample) | |
image = np.array(image).astype(np.uint8) | |
image = (image / 127.5 - 1.0).astype(np.float32) | |
instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32) | |
mask = np.zeros((self.size // factor, self.size // factor)) | |
if scale > self.size: | |
instance_image = image[top : top + inner, left : left + inner, :] | |
mask = np.ones((self.size // factor, self.size // factor)) | |
else: | |
instance_image[top : top + inner, left : left + inner, :] = image | |
mask[ | |
top // factor + 1 : (top + scale) // factor - 1, left // factor + 1 : (left + scale) // factor - 1 | |
] = 1.0 | |
return instance_image, mask | |
def __getitem__(self, index): | |
example = {} | |
instance_image, instance_prompt = self.instance_images_path[index % self.num_instance_images] | |
instance_image = Image.open(instance_image) | |
if not instance_image.mode == "RGB": | |
instance_image = instance_image.convert("RGB") | |
instance_image = self.flip(instance_image) | |
# apply resize augmentation and create a valid image region mask | |
random_scale = self.size | |
if self.aug: | |
random_scale = ( | |
np.random.randint(self.size // 3, self.size + 1) | |
if np.random.uniform() < 0.66 | |
else np.random.randint(int(1.2 * self.size), int(1.4 * self.size)) | |
) | |
instance_image, mask = self.preprocess(instance_image, random_scale, self.interpolation) | |
if random_scale < 0.6 * self.size: | |
instance_prompt = np.random.choice(["a far away ", "very small "]) + instance_prompt | |
elif random_scale > self.size: | |
instance_prompt = np.random.choice(["zoomed in ", "close up "]) + instance_prompt | |
example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1) | |
example["mask"] = torch.from_numpy(mask) | |
example["instance_prompt_ids"] = self.tokenizer( | |
instance_prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids | |
if self.with_prior_preservation: | |
class_image, class_prompt = self.class_images_path[index % self.num_class_images] | |
class_image = Image.open(class_image) | |
if not class_image.mode == "RGB": | |
class_image = class_image.convert("RGB") | |
example["class_images"] = self.image_transforms(class_image) | |
example["class_mask"] = torch.ones_like(example["mask"]) | |
example["class_prompt_ids"] = self.tokenizer( | |
class_prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids | |
return example | |
def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_dir, safe_serialization=True): | |
"""Saves the new token embeddings from the text encoder.""" | |
logger.info("Saving embeddings") | |
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight | |
for x, y in zip(modifier_token_id, args.modifier_token): | |
learned_embeds_dict = {} | |
learned_embeds_dict[y] = learned_embeds[x] | |
filename = f"{output_dir}/{y}.bin" | |
if safe_serialization: | |
safetensors.torch.save_file(learned_embeds_dict, filename, metadata={"format": "pt"}) | |
else: | |
torch.save(learned_embeds_dict, filename) | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Custom Diffusion training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
help="A folder containing the training data of instance images.", | |
) | |
parser.add_argument( | |
"--class_data_dir", | |
type=str, | |
default=None, | |
help="A folder containing the training data of class images.", | |
) | |
parser.add_argument( | |
"--instance_prompt", | |
type=str, | |
default=None, | |
help="The prompt with identifier specifying the instance", | |
) | |
parser.add_argument( | |
"--class_prompt", | |
type=str, | |
default=None, | |
help="The prompt to specify images in the same class as provided instance images.", | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="A prompt that is used during validation to verify that the model is learning.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=2, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=50, | |
help=( | |
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--with_prior_preservation", | |
default=False, | |
action="store_true", | |
help="Flag to add prior preservation loss.", | |
) | |
parser.add_argument( | |
"--real_prior", | |
default=False, | |
action="store_true", | |
help="real images as prior.", | |
) | |
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
parser.add_argument( | |
"--num_class_images", | |
type=int, | |
default=200, | |
help=( | |
"Minimal class images for prior preservation loss. If there are not enough images already present in" | |
" class_data_dir, additional images will be sampled with class_prompt." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="custom-diffusion-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=250, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-5, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=2, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument( | |
"--freeze_model", | |
type=str, | |
default="crossattn_kv", | |
choices=["crossattn_kv", "crossattn"], | |
help="crossattn to enable fine-tuning of all params in the cross attention", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--prior_generation_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp32", "fp16", "bf16"], | |
help=( | |
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." | |
), | |
) | |
parser.add_argument( | |
"--concepts_list", | |
type=str, | |
default=None, | |
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--set_grads_to_none", | |
action="store_true", | |
help=( | |
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
" behaviors, so disable this argument if it causes any problems. More info:" | |
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
), | |
) | |
parser.add_argument( | |
"--modifier_token", | |
type=str, | |
default=None, | |
help="A token to use as a modifier for the concept.", | |
) | |
parser.add_argument( | |
"--initializer_token", type=str, default="ktn+pll+ucd", help="A token to use as initializer word." | |
) | |
parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.") | |
parser.add_argument( | |
"--noaug", | |
action="store_true", | |
help="Dont apply augmentation during data augmentation when this flag is enabled.", | |
) | |
parser.add_argument( | |
"--no_safe_serialization", | |
action="store_true", | |
help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.", | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.with_prior_preservation: | |
if args.concepts_list is None: | |
if args.class_data_dir is None: | |
raise ValueError("You must specify a data directory for class images.") | |
if args.class_prompt is None: | |
raise ValueError("You must specify prompt for class images.") | |
else: | |
# logger is not available yet | |
if args.class_data_dir is not None: | |
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") | |
if args.class_prompt is not None: | |
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") | |
return args | |
def main(args): | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
# Disable AMP for MPS. | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
import wandb | |
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate | |
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. | |
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
accelerator.init_trackers("custom-diffusion", config=vars(args)) | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
if args.concepts_list is None: | |
args.concepts_list = [ | |
{ | |
"instance_prompt": args.instance_prompt, | |
"class_prompt": args.class_prompt, | |
"instance_data_dir": args.instance_data_dir, | |
"class_data_dir": args.class_data_dir, | |
} | |
] | |
else: | |
with open(args.concepts_list, "r") as f: | |
args.concepts_list = json.load(f) | |
# Generate class images if prior preservation is enabled. | |
if args.with_prior_preservation: | |
for i, concept in enumerate(args.concepts_list): | |
class_images_dir = Path(concept["class_data_dir"]) | |
if not class_images_dir.exists(): | |
class_images_dir.mkdir(parents=True, exist_ok=True) | |
if args.real_prior: | |
assert ( | |
class_images_dir / "images" | |
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
assert ( | |
len(list((class_images_dir / "images").iterdir())) == args.num_class_images | |
), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
assert ( | |
class_images_dir / "caption.txt" | |
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
assert ( | |
class_images_dir / "images.txt" | |
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
concept["class_prompt"] = os.path.join(class_images_dir, "caption.txt") | |
concept["class_data_dir"] = os.path.join(class_images_dir, "images.txt") | |
args.concepts_list[i] = concept | |
accelerator.wait_for_everyone() | |
else: | |
cur_class_images = len(list(class_images_dir.iterdir())) | |
if cur_class_images < args.num_class_images: | |
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 | |
if args.prior_generation_precision == "fp32": | |
torch_dtype = torch.float32 | |
elif args.prior_generation_precision == "fp16": | |
torch_dtype = torch.float16 | |
elif args.prior_generation_precision == "bf16": | |
torch_dtype = torch.bfloat16 | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
torch_dtype=torch_dtype, | |
safety_checker=None, | |
revision=args.revision, | |
variant=args.variant, | |
) | |
pipeline.set_progress_bar_config(disable=True) | |
num_new_images = args.num_class_images - cur_class_images | |
logger.info(f"Number of class images to sample: {num_new_images}.") | |
sample_dataset = PromptDataset(concept["class_prompt"], num_new_images) | |
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | |
sample_dataloader = accelerator.prepare(sample_dataloader) | |
pipeline.to(accelerator.device) | |
for example in tqdm( | |
sample_dataloader, | |
desc="Generating class images", | |
disable=not accelerator.is_local_main_process, | |
): | |
images = pipeline(example["prompt"]).images | |
for i, image in enumerate(images): | |
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() | |
image_filename = ( | |
class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
) | |
image.save(image_filename) | |
del pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load the tokenizer | |
if args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.tokenizer_name, | |
revision=args.revision, | |
use_fast=False, | |
) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
use_fast=False, | |
) | |
# import correct text encoder class | |
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
text_encoder = text_encoder_cls.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
) | |
# Adding a modifier token which is optimized #### | |
# Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py | |
modifier_token_id = [] | |
initializer_token_id = [] | |
if args.modifier_token is not None: | |
args.modifier_token = args.modifier_token.split("+") | |
args.initializer_token = args.initializer_token.split("+") | |
if len(args.modifier_token) > len(args.initializer_token): | |
raise ValueError("You must specify + separated initializer token for each modifier token.") | |
for modifier_token, initializer_token in zip( | |
args.modifier_token, args.initializer_token[: len(args.modifier_token)] | |
): | |
# Add the placeholder token in tokenizer | |
num_added_tokens = tokenizer.add_tokens(modifier_token) | |
if num_added_tokens == 0: | |
raise ValueError( | |
f"The tokenizer already contains the token {modifier_token}. Please pass a different" | |
" `modifier_token` that is not already in the tokenizer." | |
) | |
# Convert the initializer_token, placeholder_token to ids | |
token_ids = tokenizer.encode([initializer_token], add_special_tokens=False) | |
print(token_ids) | |
# Check if initializer_token is a single token or a sequence of tokens | |
if len(token_ids) > 1: | |
raise ValueError("The initializer token must be a single token.") | |
initializer_token_id.append(token_ids[0]) | |
modifier_token_id.append(tokenizer.convert_tokens_to_ids(modifier_token)) | |
# Resize the token embeddings as we are adding new special tokens to the tokenizer | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
# Initialise the newly added placeholder token with the embeddings of the initializer token | |
token_embeds = text_encoder.get_input_embeddings().weight.data | |
for x, y in zip(modifier_token_id, initializer_token_id): | |
token_embeds[x] = token_embeds[y] | |
# Freeze all parameters except for the token embeddings in text encoder | |
params_to_freeze = itertools.chain( | |
text_encoder.text_model.encoder.parameters(), | |
text_encoder.text_model.final_layer_norm.parameters(), | |
text_encoder.text_model.embeddings.position_embedding.parameters(), | |
) | |
freeze_params(params_to_freeze) | |
######################################################## | |
######################################################## | |
vae.requires_grad_(False) | |
if args.modifier_token is None: | |
text_encoder.requires_grad_(False) | |
unet.requires_grad_(False) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move unet, vae and text_encoder to device and cast to weight_dtype | |
if accelerator.mixed_precision != "fp16" and args.modifier_token is not None: | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
unet.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
attention_class = ( | |
CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor | |
) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warning( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
attention_class = CustomDiffusionXFormersAttnProcessor | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
# now we will add new Custom Diffusion weights to the attention layers | |
# It's important to realize here how many attention weights will be added and of which sizes | |
# The sizes of the attention layers consist only of two different variables: | |
# 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. | |
# 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. | |
# Let's first see how many attention processors we will have to set. | |
# For Stable Diffusion, it should be equal to: | |
# - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 | |
# - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 | |
# - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 | |
# => 32 layers | |
# Only train key, value projection layers if freeze_model = 'crossattn_kv' else train all params in the cross attention layer | |
train_kv = True | |
train_q_out = False if args.freeze_model == "crossattn_kv" else True | |
custom_diffusion_attn_procs = {} | |
st = unet.state_dict() | |
for name, _ in unet.attn_processors.items(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
layer_name = name.split(".processor")[0] | |
weights = { | |
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], | |
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], | |
} | |
if train_q_out: | |
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] | |
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] | |
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] | |
if cross_attention_dim is not None: | |
custom_diffusion_attn_procs[name] = attention_class( | |
train_kv=train_kv, | |
train_q_out=train_q_out, | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
).to(unet.device) | |
custom_diffusion_attn_procs[name].load_state_dict(weights) | |
else: | |
custom_diffusion_attn_procs[name] = attention_class( | |
train_kv=False, | |
train_q_out=False, | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
) | |
del st | |
unet.set_attn_processor(custom_diffusion_attn_procs) | |
custom_diffusion_layers = AttnProcsLayers(unet.attn_processors) | |
accelerator.register_for_checkpointing(custom_diffusion_layers) | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if args.modifier_token is not None: | |
text_encoder.gradient_checkpointing_enable() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
if args.with_prior_preservation: | |
args.learning_rate = args.learning_rate * 2.0 | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
# Optimizer creation | |
optimizer = optimizer_class( | |
itertools.chain(text_encoder.get_input_embeddings().parameters(), custom_diffusion_layers.parameters()) | |
if args.modifier_token is not None | |
else custom_diffusion_layers.parameters(), | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# Dataset and DataLoaders creation: | |
train_dataset = CustomDiffusionDataset( | |
concepts_list=args.concepts_list, | |
tokenizer=tokenizer, | |
with_prior_preservation=args.with_prior_preservation, | |
size=args.resolution, | |
mask_size=vae.encode( | |
torch.randn(1, 3, args.resolution, args.resolution).to(dtype=weight_dtype).to(accelerator.device) | |
) | |
.latent_dist.sample() | |
.size()[-1], | |
center_crop=args.center_crop, | |
num_class_images=args.num_class_images, | |
hflip=args.hflip, | |
aug=not args.noaug, | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
) | |
# Prepare everything with our `accelerator`. | |
if args.modifier_token is not None: | |
custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler | |
) | |
else: | |
custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler | |
) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
for epoch in range(first_epoch, args.num_train_epochs): | |
unet.train() | |
if args.modifier_token is not None: | |
text_encoder.train() | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(unet), accelerator.accumulate(text_encoder): | |
# Convert images to latent space | |
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder(batch["input_ids"])[0] | |
# Predict the noise residual | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
if args.with_prior_preservation: | |
# Chunk the noise and model_pred into two parts and compute the loss on each part separately. | |
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | |
target, target_prior = torch.chunk(target, 2, dim=0) | |
mask = torch.chunk(batch["mask"], 2, dim=0)[0] | |
# Compute instance loss | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() | |
# Compute prior loss | |
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | |
# Add the prior loss to the instance loss. | |
loss = loss + args.prior_loss_weight * prior_loss | |
else: | |
mask = batch["mask"] | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() | |
accelerator.backward(loss) | |
# Zero out the gradients for all token embeddings except the newly added | |
# embeddings for the concept, as we only want to optimize the concept embeddings | |
if args.modifier_token is not None: | |
if accelerator.num_processes > 1: | |
grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad | |
else: | |
grads_text_encoder = text_encoder.get_input_embeddings().weight.grad | |
# Get the index for tokens that we want to zero the grads for | |
index_grads_to_zero = torch.arange(len(tokenizer)) != modifier_token_id[0] | |
for i in range(1, len(modifier_token_id)): | |
index_grads_to_zero = index_grads_to_zero & ( | |
torch.arange(len(tokenizer)) != modifier_token_id[i] | |
) | |
grads_text_encoder.data[index_grads_to_zero, :] = grads_text_encoder.data[ | |
index_grads_to_zero, : | |
].fill_(0) | |
if accelerator.sync_gradients: | |
params_to_clip = ( | |
itertools.chain(text_encoder.parameters(), custom_diffusion_layers.parameters()) | |
if args.modifier_token is not None | |
else custom_diffusion_layers.parameters() | |
) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step % args.checkpointing_steps == 0: | |
if accelerator.is_main_process: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
if accelerator.is_main_process: | |
images = [] | |
if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
f" {args.validation_prompt}." | |
) | |
# create pipeline | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=accelerator.unwrap_model(unet), | |
text_encoder=accelerator.unwrap_model(text_encoder), | |
tokenizer=tokenizer, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
# run inference | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
images = [ | |
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[ | |
0 | |
] | |
for _ in range(args.num_validation_images) | |
] | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
"validation": [ | |
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") | |
for i, image in enumerate(images) | |
] | |
} | |
) | |
del pipeline | |
torch.cuda.empty_cache() | |
# Save the custom diffusion layers | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = unet.to(torch.float32) | |
unet.save_attn_procs(args.output_dir, safe_serialization=not args.no_safe_serialization) | |
save_new_embed( | |
text_encoder, | |
modifier_token_id, | |
accelerator, | |
args, | |
args.output_dir, | |
safe_serialization=not args.no_safe_serialization, | |
) | |
# Final inference | |
# Load previous pipeline | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
pipeline = pipeline.to(accelerator.device) | |
# load attention processors | |
weight_name = ( | |
"pytorch_custom_diffusion_weights.safetensors" | |
if not args.no_safe_serialization | |
else "pytorch_custom_diffusion_weights.bin" | |
) | |
pipeline.unet.load_attn_procs(args.output_dir, weight_name=weight_name) | |
for token in args.modifier_token: | |
token_weight_name = f"{token}.safetensors" if not args.no_safe_serialization else f"{token}.bin" | |
pipeline.load_textual_inversion(args.output_dir, weight_name=token_weight_name) | |
# run inference | |
if args.validation_prompt and args.num_validation_images > 0: | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None | |
images = [ | |
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0] | |
for _ in range(args.num_validation_images) | |
] | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
"test": [ | |
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") | |
for i, image in enumerate(images) | |
] | |
} | |
) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
images=images, | |
base_model=args.pretrained_model_name_or_path, | |
prompt=args.instance_prompt, | |
repo_folder=args.output_dir, | |
) | |
api = HfApi(token=args.hub_token) | |
api.upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |