Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.model_zoo | |
from einops import rearrange, repeat | |
from gmflow.gmflow import GMFlow | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput | |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def clear_cache(): | |
gc.collect() | |
torch.cuda.empty_cache() | |
def coords_grid(b, h, w, homogeneous=False, device=None): | |
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W] | |
stacks = [x, y] | |
if homogeneous: | |
ones = torch.ones_like(x) # [H, W] | |
stacks.append(ones) | |
grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W] | |
grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W] | |
if device is not None: | |
grid = grid.to(device) | |
return grid | |
def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False): | |
# img: [B, C, H, W] | |
# sample_coords: [B, 2, H, W] in image scale | |
if sample_coords.size(1) != 2: # [B, H, W, 2] | |
sample_coords = sample_coords.permute(0, 3, 1, 2) | |
b, _, h, w = sample_coords.shape | |
# Normalize to [-1, 1] | |
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 | |
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 | |
grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2] | |
img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) | |
if return_mask: | |
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W] | |
return img, mask | |
return img | |
class Dilate: | |
def __init__(self, kernel_size=7, channels=1, device="cpu"): | |
self.kernel_size = kernel_size | |
self.channels = channels | |
gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size) | |
gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1) | |
self.mean = (self.kernel_size - 1) // 2 | |
gaussian_kernel = gaussian_kernel.to(device) | |
self.gaussian_filter = gaussian_kernel | |
def __call__(self, x): | |
x = F.pad(x, (self.mean, self.mean, self.mean, self.mean), "replicate") | |
return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1) | |
def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"): | |
b, c, h, w = feature.size() | |
assert flow.size(1) == 2 | |
grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W] | |
grid = grid.to(feature.dtype) | |
return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask) | |
def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5): | |
# fwd_flow, bwd_flow: [B, 2, H, W] | |
# alpha and beta values are following UnFlow | |
# (https://arxiv.org/abs/1711.07837) | |
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 | |
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 | |
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W] | |
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W] | |
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W] | |
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W] | |
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) | |
threshold = alpha * flow_mag + beta | |
fwd_occ = (diff_fwd > threshold).float() # [B, H, W] | |
bwd_occ = (diff_bwd > threshold).float() | |
return fwd_occ, bwd_occ | |
def numpy2tensor(img): | |
x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1.0 | |
x0 = torch.stack([x0], dim=0) | |
# einops.rearrange(x0, 'b h w c -> b c h w').clone() | |
return x0.permute(0, 3, 1, 2) | |
def calc_mean_std(feat, eps=1e-5, chunk=1): | |
size = feat.size() | |
assert len(size) == 4 | |
if chunk == 2: | |
feat = torch.cat(feat.chunk(2), dim=3) | |
N, C = size[:2] | |
feat_var = feat.view(N // chunk, C, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(N, C, 1, 1) | |
feat_mean = feat.view(N // chunk, C, -1).mean(dim=2).view(N // chunk, C, 1, 1) | |
return feat_mean.repeat(chunk, 1, 1, 1), feat_std.repeat(chunk, 1, 1, 1) | |
def adaptive_instance_normalization(content_feat, style_feat, chunk=1): | |
assert content_feat.size()[:2] == style_feat.size()[:2] | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat, chunk) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
def optimize_feature( | |
sample, flows, occs, correlation_matrix=[], intra_weight=1e2, iters=20, unet_chunk_size=2, optimize_temporal=True | |
): | |
""" | |
FRESO-guided latent feature optimization | |
* optimize spatial correspondence (match correlation_matrix) | |
* optimize temporal correspondence (match warped_image) | |
""" | |
if (flows is None or occs is None or (not optimize_temporal)) and ( | |
intra_weight == 0 or len(correlation_matrix) == 0 | |
): | |
return sample | |
# flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1 | |
# occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1 | |
# sample: 2N*C*H*W | |
torch.cuda.empty_cache() | |
video_length = sample.shape[0] // unet_chunk_size | |
latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length) | |
cs = torch.nn.Parameter((latent.detach().clone())) | |
optimizer = torch.optim.Adam([cs], lr=0.2) | |
# unify resolution | |
if flows is not None and occs is not None: | |
scale = sample.shape[2] * 1.0 / flows[0].shape[2] | |
kernel = int(1 / scale) | |
bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear").repeat( | |
unet_chunk_size, 1, 1, 1 | |
) | |
bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat( | |
unet_chunk_size, 1, 1, 1 | |
) # 2(N-1)*1*H1*W1 | |
fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear").repeat( | |
unet_chunk_size, 1, 1, 1 | |
) | |
fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat( | |
unet_chunk_size, 1, 1, 1 | |
) # 2(N-1)*1*H1*W1 | |
# match frame 0,1,2,3 and frame 1,2,3,0 | |
reshuffle_list = list(range(1, video_length)) + [0] | |
# attention_probs is the GRAM matrix of the normalized feature | |
attention_probs = None | |
for tmp in correlation_matrix: | |
if sample.shape[2] * sample.shape[3] == tmp.shape[1]: | |
attention_probs = tmp # 2N*HW*HW | |
break | |
n_iter = [0] | |
while n_iter[0] < iters: | |
def closure(): | |
optimizer.zero_grad() | |
loss = 0 | |
# temporal consistency loss | |
if optimize_temporal and flows is not None and occs is not None: | |
c1 = rearrange(cs[:, :], "b f c h w -> (b f) c h w") | |
c2 = rearrange(cs[:, reshuffle_list], "b f c h w -> (b f) c h w") | |
warped_image1 = flow_warp(c1, bwd_flow_) | |
warped_image2 = flow_warp(c2, fwd_flow_) | |
loss = ( | |
abs((c2 - warped_image1) * (1 - bwd_occ_)) + abs((c1 - warped_image2) * (1 - fwd_occ_)) | |
).mean() * 2 | |
# spatial consistency loss | |
if attention_probs is not None and intra_weight > 0: | |
cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c") | |
# attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) | |
# cs_attention_probs = attention_scores.softmax(dim=-1) | |
cs_vector = cs_vector / ((cs_vector**2).sum(dim=2, keepdims=True) ** 0.5) | |
cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) | |
tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight | |
loss = tmp + loss | |
loss.backward() | |
n_iter[0] += 1 | |
return loss | |
optimizer.step(closure) | |
torch.cuda.empty_cache() | |
return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample) | |
def warp_tensor(sample, flows, occs, saliency, unet_chunk_size): | |
""" | |
Warp images or features based on optical flow | |
Fuse the warped imges or features based on occusion masks and saliency map | |
""" | |
scale = sample.shape[2] * 1.0 / flows[0].shape[2] | |
kernel = int(1 / scale) | |
bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear") | |
bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 | |
if scale == 1: | |
bwd_occ_ = Dilate(kernel_size=13, device=sample.device)(bwd_occ_) | |
fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear") | |
fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 | |
if scale == 1: | |
fwd_occ_ = Dilate(kernel_size=13, device=sample.device)(fwd_occ_) | |
scale2 = sample.shape[2] * 1.0 / saliency.shape[2] | |
saliency = F.interpolate(saliency, scale_factor=scale2, mode="bilinear") | |
latent = sample.to(torch.float32) | |
video_length = sample.shape[0] // unet_chunk_size | |
warp_saliency = flow_warp(saliency, bwd_flow_) | |
warp_saliency_ = flow_warp(saliency[0:1], fwd_flow_[video_length - 1 : video_length]) | |
for j in range(unet_chunk_size): | |
for ii in range(video_length - 1): | |
i = video_length * j + ii | |
warped_image = flow_warp(latent[i : i + 1], bwd_flow_[ii : ii + 1]) | |
mask = (1 - bwd_occ_[ii : ii + 1]) * saliency[ii + 1 : ii + 2] * warp_saliency[ii : ii + 1] | |
latent[i + 1 : i + 2] = latent[i + 1 : i + 2] * (1 - mask) + warped_image * mask | |
i = video_length * j | |
ii = video_length - 1 | |
warped_image = flow_warp(latent[i : i + 1], fwd_flow_[ii : ii + 1]) | |
mask = (1 - fwd_occ_[ii : ii + 1]) * saliency[ii : ii + 1] * warp_saliency_ | |
latent[ii + i : ii + i + 1] = latent[ii + i : ii + i + 1] * (1 - mask) + warped_image * mask | |
return latent.to(sample.dtype) | |
def my_forward( | |
self, | |
steps=[], | |
layers=[0, 1, 2, 3], | |
flows=None, | |
occs=None, | |
correlation_matrix=[], | |
intra_weight=1e2, | |
iters=20, | |
optimize_temporal=True, | |
saliency=None, | |
): | |
""" | |
Hacked pipe.unet.forward() | |
copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700 | |
if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code) | |
* restore and return the decoder features | |
* optimize the decoder features | |
* perform background smoothing | |
""" | |
def forward( | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
r""" | |
The [`UNet2DConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
encoder_attention_mask (`torch.Tensor`): | |
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | |
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | |
which adds large negative values to the attention scores corresponding to "discard" tokens. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# there might be better ways to encapsulate this. | |
class_labels = class_labels.to(dtype=sample.dtype) | |
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
elif self.config.addition_embed_type == "text_image": | |
# Kandinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
aug_emb = self.add_embedding(text_embs, image_embs) | |
elif self.config.addition_embed_type == "text_time": | |
# SDXL - style | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
elif self.config.addition_embed_type == "image": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
aug_emb = self.add_embedding(image_embs) | |
elif self.config.addition_embed_type == "image_hint": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
hint = added_cond_kwargs.get("hint") | |
aug_emb, hint = self.add_embedding(image_embs, hint) | |
sample = torch.cat([sample, hint], dim=1) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 3. down | |
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# For t2i-adapter CrossAttnDownBlock2D | |
additional_residuals = {} | |
if is_adapter and len(down_block_additional_residuals) > 0: | |
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
**additional_residuals, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
if is_adapter and len(down_block_additional_residuals) > 0: | |
sample += down_block_additional_residuals.pop(0) | |
down_block_res_samples += res_samples | |
if is_controlnet: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
if is_controlnet: | |
sample = sample + mid_block_additional_residual | |
# 5. up | |
""" | |
[HACK] restore the decoder features in up_samples | |
""" | |
up_samples = () | |
# down_samples = () | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
""" | |
[HACK] restore the decoder features in up_samples | |
[HACK] optimize the decoder features | |
[HACK] perform background smoothing | |
""" | |
if i in layers: | |
up_samples += (sample,) | |
if timestep in steps and i in layers: | |
sample = optimize_feature( | |
sample, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal=optimize_temporal | |
) | |
if saliency is not None: | |
sample = warp_tensor(sample, flows, occs, saliency, 2) | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
""" | |
[HACK] return the output feature as well as the decoder features | |
""" | |
if not return_dict: | |
return (sample,) + up_samples | |
return UNet2DConditionOutput(sample=sample) | |
return forward | |
def get_single_mapping_ind(bwd_flow, bwd_occ, imgs, scale=1.0): | |
""" | |
FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) | |
Find the correspondence between every pixels in a pair of frames | |
[input] | |
bwd_flow: 1*2*H*W | |
bwd_occ: 1*H*W i.e., f2 = warp(f1, bwd_flow) * bwd_occ | |
imgs: 2*3*H*W i.e., [f1,f2] | |
[output] | |
mapping_ind: pixel index correspondence | |
unlinkedmask: indicate whether a pixel has no correspondence | |
i.e., f2 = f1[mapping_ind] * unlinkedmask | |
""" | |
flows = F.interpolate(bwd_flow, scale_factor=1.0 / scale, mode="bilinear")[0][[1, 0]] / scale # 2*H*W | |
_, H, W = flows.shape | |
masks = torch.logical_not(F.interpolate(bwd_occ[None], scale_factor=1.0 / scale, mode="bilinear") > 0.5)[ | |
0 | |
] # 1*H*W | |
frames = F.interpolate(imgs, scale_factor=1.0 / scale, mode="bilinear").view(2, 3, -1) # 2*3*HW | |
grid = torch.stack(torch.meshgrid([torch.arange(H), torch.arange(W)]), dim=0).to(flows.device) # 2*H*W | |
warp_grid = torch.round(grid + flows) | |
mask = torch.logical_and( | |
torch.logical_and( | |
torch.logical_and(torch.logical_and(warp_grid[0] >= 0, warp_grid[0] < H), warp_grid[1] >= 0), | |
warp_grid[1] < W, | |
), | |
masks[0], | |
).view(-1) # HW | |
warp_grid = warp_grid.view(2, -1) # 2*HW | |
warp_ind = (warp_grid[0] * W + warp_grid[1]).to(torch.long) # HW | |
mapping_ind = torch.zeros_like(warp_ind) - 1 # HW | |
for f0ind, f1ind in enumerate(warp_ind): | |
if mask[f0ind]: | |
if mapping_ind[f1ind] == -1: | |
mapping_ind[f1ind] = f0ind | |
else: | |
targetv = frames[0, :, f1ind] | |
pref0ind = mapping_ind[f1ind] | |
prev = frames[1, :, pref0ind] | |
v = frames[1, :, f0ind] | |
if ((prev - targetv) ** 2).mean() > ((v - targetv) ** 2).mean(): | |
mask[pref0ind] = False | |
mapping_ind[f1ind] = f0ind | |
else: | |
mask[f0ind] = False | |
unusedind = torch.arange(len(mask)).to(mask.device)[~mask] | |
unlinkedmask = mapping_ind == -1 | |
mapping_ind[unlinkedmask] = unusedind | |
return mapping_ind, unlinkedmask | |
def get_mapping_ind(bwd_flows, bwd_occs, imgs, scale=1.0): | |
""" | |
FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) | |
Find pixel correspondence between every consecutive frames in a batch | |
[input] | |
bwd_flow: (N-1)*2*H*W | |
bwd_occ: (N-1)*H*W | |
imgs: N*3*H*W | |
[output] | |
fwd_mappings: N*1*HW | |
bwd_mappings: N*1*HW | |
flattn_mask: HW*1*N*N | |
i.e., imgs[i,:,fwd_mappings[i]] corresponds to imgs[0] | |
i.e., imgs[i,:,fwd_mappings[i]][:,bwd_mappings[i]] restore the original imgs[i] | |
""" | |
N, H, W = imgs.shape[0], int(imgs.shape[2] // scale), int(imgs.shape[3] // scale) | |
iterattn_mask = torch.ones(H * W, N, N, dtype=torch.bool).to(imgs.device) | |
for i in range(len(imgs) - 1): | |
one_mask = torch.ones(N, N, dtype=torch.bool).to(imgs.device) | |
one_mask[: i + 1, i + 1 :] = False | |
one_mask[i + 1 :, : i + 1] = False | |
mapping_ind, unlinkedmask = get_single_mapping_ind( | |
bwd_flows[i : i + 1], bwd_occs[i : i + 1], imgs[i : i + 2], scale | |
) | |
if i == 0: | |
fwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] | |
bwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] | |
iterattn_mask[unlinkedmask[fwd_mapping[-1]]] = torch.logical_and( | |
iterattn_mask[unlinkedmask[fwd_mapping[-1]]], one_mask | |
) | |
fwd_mapping += [mapping_ind[fwd_mapping[-1]]] | |
bwd_mapping += [torch.sort(fwd_mapping[-1])[1]] | |
fwd_mappings = torch.stack(fwd_mapping, dim=0).unsqueeze(1) | |
bwd_mappings = torch.stack(bwd_mapping, dim=0).unsqueeze(1) | |
return fwd_mappings, bwd_mappings, iterattn_mask.unsqueeze(1) | |
def apply_FRESCO_opt( | |
pipe, | |
steps=[], | |
layers=[0, 1, 2, 3], | |
flows=None, | |
occs=None, | |
correlation_matrix=[], | |
intra_weight=1e2, | |
iters=20, | |
optimize_temporal=True, | |
saliency=None, | |
): | |
""" | |
Apply FRESCO-based optimization to a StableDiffusionPipeline | |
""" | |
pipe.unet.forward = my_forward( | |
pipe.unet, steps, layers, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal, saliency | |
) | |
def get_intraframe_paras(pipe, imgs, frescoProc, prompt_embeds, do_classifier_free_guidance=True, generator=None): | |
""" | |
Get parameters for spatial-guided attention and optimization | |
* perform one step denoising | |
* collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn'] | |
* compute the gram matrix of the normalized feature for spatial consistency loss | |
""" | |
noise_scheduler = pipe.scheduler | |
timestep = noise_scheduler.timesteps[-1] | |
device = pipe._execution_device | |
B, C, H, W = imgs.shape | |
frescoProc.controller.disable_controller() | |
apply_FRESCO_opt(pipe) | |
frescoProc.controller.clear_store() | |
frescoProc.controller.enable_store() | |
latents = pipe.prepare_latents( | |
imgs.to(pipe.unet.dtype), timestep, B, 1, prompt_embeds.dtype, device, generator=generator, repeat_noise=False | |
) | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
model_output = pipe.unet( | |
latent_model_input, | |
timestep, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=None, | |
return_dict=False, | |
) | |
frescoProc.controller.disable_store() | |
# gram matrix of the normalized feature for spatial consistency loss | |
correlation_matrix = [] | |
for tmp in model_output[1:]: | |
latent_vector = rearrange(tmp, "b c h w -> b (h w) c") | |
latent_vector = latent_vector / ((latent_vector**2).sum(dim=2, keepdims=True) ** 0.5) | |
attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2)) | |
correlation_matrix += [attention_probs.detach().clone().to(torch.float32)] | |
del attention_probs, latent_vector, tmp | |
del model_output | |
clear_cache() | |
return correlation_matrix | |
def get_flow_and_interframe_paras(flow_model, imgs): | |
""" | |
Get parameters for temporal-guided attention and optimization | |
* predict optical flow and occlusion mask | |
* compute pixel index correspondence for FLATTEN | |
""" | |
images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda() | |
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) | |
reshuffle_list = list(range(1, len(images))) + [0] | |
results_dict = flow_model( | |
images, | |
images[reshuffle_list], | |
attn_splits_list=[2], | |
corr_radius_list=[-1], | |
prop_radius_list=[-1], | |
pred_bidir_flow=True, | |
) | |
flow_pr = results_dict["flow_preds"][-1] # [2*B, 2, H, W] | |
fwd_flows, bwd_flows = flow_pr.chunk(2) # [B, 2, H, W] | |
fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) # [B, H, W] | |
warped_image1 = flow_warp(images, bwd_flows) | |
bwd_occs = torch.clamp( | |
bwd_occs + (abs(images[reshuffle_list] - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1 | |
) | |
warped_image2 = flow_warp(images[reshuffle_list], fwd_flows) | |
fwd_occs = torch.clamp(fwd_occs + (abs(images - warped_image2).mean(dim=1) > 255 * 0.25).float(), 0, 1) | |
attn_mask = [] | |
for scale in [8.0, 16.0, 32.0]: | |
bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1.0 / scale, mode="bilinear") | |
attn_mask += [ | |
torch.cat((bwd_occs_[0:1].reshape(1, -1) > -1, bwd_occs_.reshape(bwd_occs_.shape[0], -1) > 0.5), dim=0) | |
] | |
fwd_mappings = [] | |
bwd_mappings = [] | |
interattn_masks = [] | |
for scale in [8.0, 16.0]: | |
fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale) | |
fwd_mappings += [fwd_mapping] | |
bwd_mappings += [bwd_mapping] | |
interattn_masks += [interattn_mask] | |
interattn_paras = {} | |
interattn_paras["fwd_mappings"] = fwd_mappings | |
interattn_paras["bwd_mappings"] = bwd_mappings | |
interattn_paras["interattn_masks"] = interattn_masks | |
clear_cache() | |
return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras | |
class AttentionControl: | |
""" | |
Control FRESCO-based attention | |
* enable/diable spatial-guided attention | |
* enable/diable temporal-guided attention | |
* enable/diable cross-frame attention | |
* collect intermediate attention feature (for spatial-guided attention) | |
""" | |
def __init__(self): | |
self.stored_attn = self.get_empty_store() | |
self.store = False | |
self.index = 0 | |
self.attn_mask = None | |
self.interattn_paras = None | |
self.use_interattn = False | |
self.use_cfattn = False | |
self.use_intraattn = False | |
self.intraattn_bias = 0 | |
self.intraattn_scale_factor = 0.2 | |
self.interattn_scale_factor = 0.2 | |
def get_empty_store(): | |
return { | |
"decoder_attn": [], | |
} | |
def clear_store(self): | |
del self.stored_attn | |
torch.cuda.empty_cache() | |
gc.collect() | |
self.stored_attn = self.get_empty_store() | |
self.disable_intraattn() | |
# store attention feature of the input frame for spatial-guided attention | |
def enable_store(self): | |
self.store = True | |
def disable_store(self): | |
self.store = False | |
# spatial-guided attention | |
def enable_intraattn(self): | |
self.index = 0 | |
self.use_intraattn = True | |
self.disable_store() | |
if len(self.stored_attn["decoder_attn"]) == 0: | |
self.use_intraattn = False | |
def disable_intraattn(self): | |
self.index = 0 | |
self.use_intraattn = False | |
self.disable_store() | |
def disable_cfattn(self): | |
self.use_cfattn = False | |
# cross frame attention | |
def enable_cfattn(self, attn_mask=None): | |
if attn_mask: | |
if self.attn_mask: | |
del self.attn_mask | |
torch.cuda.empty_cache() | |
self.attn_mask = attn_mask | |
self.use_cfattn = True | |
else: | |
if self.attn_mask: | |
self.use_cfattn = True | |
else: | |
print("Warning: no valid cross-frame attention parameters available!") | |
self.disable_cfattn() | |
def disable_interattn(self): | |
self.use_interattn = False | |
# temporal-guided attention | |
def enable_interattn(self, interattn_paras=None): | |
if interattn_paras: | |
if self.interattn_paras: | |
del self.interattn_paras | |
torch.cuda.empty_cache() | |
self.interattn_paras = interattn_paras | |
self.use_interattn = True | |
else: | |
if self.interattn_paras: | |
self.use_interattn = True | |
else: | |
print("Warning: no valid temporal-guided attention parameters available!") | |
self.disable_interattn() | |
def disable_controller(self): | |
self.disable_intraattn() | |
self.disable_interattn() | |
self.disable_cfattn() | |
def enable_controller(self, interattn_paras=None, attn_mask=None): | |
self.enable_intraattn() | |
self.enable_interattn(interattn_paras) | |
self.enable_cfattn(attn_mask) | |
def forward(self, context): | |
if self.store: | |
self.stored_attn["decoder_attn"].append(context.detach()) | |
if self.use_intraattn and len(self.stored_attn["decoder_attn"]) > 0: | |
tmp = self.stored_attn["decoder_attn"][self.index] | |
self.index = self.index + 1 | |
if self.index >= len(self.stored_attn["decoder_attn"]): | |
self.index = 0 | |
self.disable_store() | |
return tmp | |
return context | |
def __call__(self, context): | |
context = self.forward(context) | |
return context | |
class FRESCOAttnProcessor2_0: | |
""" | |
Hack self attention to FRESCO-based attention | |
* adding spatial-guided attention | |
* adding temporal-guided attention | |
* adding cross-frame attention | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
Usage | |
frescoProc = FRESCOAttnProcessor2_0(2, attn_mask) | |
attnProc = AttnProcessor2_0() | |
attn_processor_dict = {} | |
for k in pipe.unet.attn_processors.keys(): | |
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): | |
attn_processor_dict[k] = frescoProc | |
else: | |
attn_processor_dict[k] = attnProc | |
pipe.unet.set_attn_processor(attn_processor_dict) | |
""" | |
def __init__(self, unet_chunk_size=2, controller=None): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.unet_chunk_size = unet_chunk_size | |
self.controller = controller | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
crossattn = False | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
if self.controller and self.controller.store: | |
self.controller(hidden_states.detach().clone()) | |
else: | |
crossattn = True | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
# BC * HW * 8D | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query_raw, key_raw = None, None | |
if self.controller and self.controller.use_interattn and (not crossattn): | |
query_raw, key_raw = query.clone(), key.clone() | |
inner_dim = key.shape[-1] # 8D | |
head_dim = inner_dim // attn.heads # D | |
"""for efficient cross-frame attention""" | |
if self.controller and self.controller.use_cfattn and (not crossattn): | |
video_length = key.size()[0] // self.unet_chunk_size | |
former_frame_index = [0] * video_length | |
attn_mask = None | |
if self.controller.attn_mask is not None: | |
for m in self.controller.attn_mask: | |
if m.shape[1] == key.shape[1]: | |
attn_mask = m | |
# BC * HW * 8D --> B * C * HW * 8D | |
key = rearrange(key, "(b f) d c -> b f d c", f=video_length) | |
# B * C * HW * 8D --> B * C * HW * 8D | |
if attn_mask is None: | |
key = key[:, former_frame_index] | |
else: | |
key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length) | |
# B * C * HW * 8D --> BC * HW * 8D | |
key = rearrange(key, "b f d c -> (b f) d c").detach() | |
value = rearrange(value, "(b f) d c -> b f d c", f=video_length) | |
if attn_mask is None: | |
value = value[:, former_frame_index] | |
else: | |
value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length) | |
value = rearrange(value, "b f d c -> (b f) d c").detach() | |
# BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# BC * 8 * HW2 * D | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# BC * 8 * HW2 * D2 | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
"""for spatial-guided intra-frame attention""" | |
if self.controller and self.controller.use_intraattn and (not crossattn): | |
ref_hidden_states = self.controller(None) | |
assert ref_hidden_states.shape == encoder_hidden_states.shape | |
query_ = attn.to_q(ref_hidden_states) | |
key_ = attn.to_k(ref_hidden_states) | |
# BC * 8 * HW * D | |
query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
query = F.scaled_dot_product_attention( | |
query_, | |
key_ * self.controller.intraattn_scale_factor, | |
query, | |
attn_mask=torch.eye(query_.size(-2), key_.size(-2), dtype=query.dtype, device=query.device) | |
* self.controller.intraattn_bias, | |
).detach() | |
del query_, key_ | |
torch.cuda.empty_cache() | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
# output: BC * 8 * HW * D2 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
"""for temporal-guided inter-frame attention (FLATTEN)""" | |
if self.controller and self.controller.use_interattn and (not crossattn): | |
del query, key, value | |
torch.cuda.empty_cache() | |
bwd_mapping = None | |
fwd_mapping = None | |
for i, f in enumerate(self.controller.interattn_paras["fwd_mappings"]): | |
if f.shape[2] == hidden_states.shape[2]: | |
fwd_mapping = f | |
bwd_mapping = self.controller.interattn_paras["bwd_mappings"][i] | |
interattn_mask = self.controller.interattn_paras["interattn_masks"][i] | |
video_length = key_raw.size()[0] // self.unet_chunk_size | |
# BC * HW * 8D --> C * 8BD * HW | |
key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length) | |
query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length) | |
# BC * 8 * HW * D --> C * 8BD * HW | |
# key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ######## | |
# query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ####### | |
value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) | |
key = torch.gather(key, 2, fwd_mapping.expand(-1, key.shape[1], -1)) | |
query = torch.gather(query, 2, fwd_mapping.expand(-1, query.shape[1], -1)) | |
value = torch.gather(value, 2, fwd_mapping.expand(-1, value.shape[1], -1)) | |
# C * 8BD * HW --> BHW, C, 8D | |
key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) | |
query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) | |
value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) | |
# BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D | |
query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() | |
key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() | |
value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() | |
hidden_states_ = F.scaled_dot_product_attention( | |
query, | |
key * self.controller.interattn_scale_factor, | |
value, | |
# .to(query.dtype)-1.0) * 1e6 - | |
attn_mask=(interattn_mask.repeat(self.unet_chunk_size, 1, 1, 1)), | |
# torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4, | |
) | |
# BHW * 8 * C * D --> C * 8BD * HW | |
hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size) | |
hidden_states_ = torch.gather( | |
hidden_states_, 2, bwd_mapping.expand(-1, hidden_states_.shape[1], -1) | |
).detach() | |
# C * 8BD * HW --> BC * 8 * HW * D | |
hidden_states = rearrange( | |
hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads | |
) | |
# BC * 8 * HW * D --> BC * HW * 8D | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def apply_FRESCO_attn(pipe): | |
""" | |
Apply FRESCO-guided attention to a StableDiffusionPipeline | |
""" | |
frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) | |
attnProc = AttnProcessor2_0() | |
attn_processor_dict = {} | |
for k in pipe.unet.attn_processors.keys(): | |
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): | |
attn_processor_dict[k] = frescoProc | |
else: | |
attn_processor_dict[k] = attnProc | |
pipe.unet.set_attn_processor(attn_processor_dict) | |
return frescoProc | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
def prepare_image(image): | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
image = image.unsqueeze(0) | |
image = image.to(dtype=torch.float32) | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
return image | |
class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline): | |
r""" | |
Pipeline for video-to-video translation using Stable Diffusion with FRESCO Algorithm. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | |
Provides additional conditioning to the `unet` during the denoising process. If you set multiple | |
ControlNets as a list, the outputs from each ControlNet are added together to create one combined | |
additional conditioning. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
""" | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
_exclude_from_cpu_offload = ["safety_checker"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__( | |
vae, | |
text_encoder, | |
tokenizer, | |
unet, | |
controlnet, | |
scheduler, | |
safety_checker, | |
feature_extractor, | |
image_encoder, | |
requires_safety_checker, | |
) | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
if isinstance(controlnet, (list, tuple)): | |
controlnet = MultiControlNetModel(controlnet) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | |
self.control_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | |
) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) | |
attnProc = AttnProcessor2_0() | |
attn_processor_dict = {} | |
for k in self.unet.attn_processors.keys(): | |
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): | |
attn_processor_dict[k] = frescoProc | |
else: | |
attn_processor_dict[k] = attnProc | |
self.unet.set_attn_processor(attn_processor_dict) | |
self.frescoProc = frescoProc | |
flow_model = GMFlow( | |
feature_channels=128, | |
num_scales=1, | |
upsample_factor=8, | |
num_head=1, | |
attention_type="swin", | |
ffn_dim_expansion=4, | |
num_transformer_layers=6, | |
).to(self.device) | |
checkpoint = torch.utils.model_zoo.load_url( | |
"https://huggingface.co/Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth", | |
map_location=lambda storage, loc: storage, | |
) | |
weights = checkpoint["model"] if "model" in checkpoint else checkpoint | |
flow_model.load_state_dict(weights, strict=False) | |
flow_model.eval() | |
self.flow_model = flow_model | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_enc_hidden_states = self.image_encoder( | |
torch.zeros_like(image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
return image_enc_hidden_states, uncond_image_enc_hidden_states | |
else: | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds | |
def prepare_ip_adapter_image_embeds( | |
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
): | |
if ip_adapter_image_embeds is None: | |
if not isinstance(ip_adapter_image, list): | |
ip_adapter_image = [ip_adapter_image] | |
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
raise ValueError( | |
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
) | |
image_embeds = [] | |
for single_ip_adapter_image, image_proj_layer in zip( | |
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
): | |
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
single_image_embeds, single_negative_image_embeds = self.encode_image( | |
single_ip_adapter_image, device, 1, output_hidden_state | |
) | |
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | |
single_negative_image_embeds = torch.stack( | |
[single_negative_image_embeds] * num_images_per_prompt, dim=0 | |
) | |
if do_classifier_free_guidance: | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
single_image_embeds = single_image_embeds.to(device) | |
image_embeds.append(single_image_embeds) | |
else: | |
repeat_dims = [1] | |
image_embeds = [] | |
for single_image_embeds in ip_adapter_image_embeds: | |
if do_classifier_free_guidance: | |
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | |
single_image_embeds = single_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
) | |
single_negative_image_embeds = single_negative_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | |
) | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
else: | |
single_image_embeds = single_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
) | |
image_embeds.append(single_image_embeds) | |
return image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
image, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
ip_adapter_image=None, | |
ip_adapter_image_embeds=None, | |
controlnet_conditioning_scale=1.0, | |
control_guidance_start=0.0, | |
control_guidance_end=1.0, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# `prompt` needs more sophisticated handling when there are multiple | |
# conditionings. | |
if isinstance(self.controlnet, MultiControlNetModel): | |
if isinstance(prompt, list): | |
logger.warning( | |
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" | |
" prompts. The conditionings will be fixed across the prompts." | |
) | |
# Check `image` | |
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
) | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
self.check_image(image, prompt, prompt_embeds) | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if not isinstance(image, list): | |
raise TypeError("For multiple controlnets: `image` must be type `list`") | |
# When `image` is a nested list: | |
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) | |
elif any(isinstance(i, list) for i in image): | |
raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
elif len(image) != len(self.controlnet.nets): | |
raise ValueError( | |
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." | |
) | |
for image_ in image: | |
self.check_image(image_, prompt, prompt_embeds) | |
else: | |
assert False | |
# Check `controlnet_conditioning_scale` | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
if not isinstance(controlnet_conditioning_scale, float): | |
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if isinstance(controlnet_conditioning_scale, list): | |
if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | |
self.controlnet.nets | |
): | |
raise ValueError( | |
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
" the same length as the number of controlnets" | |
) | |
else: | |
assert False | |
if len(control_guidance_start) != len(control_guidance_end): | |
raise ValueError( | |
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
) | |
if isinstance(self.controlnet, MultiControlNetModel): | |
if len(control_guidance_start) != len(self.controlnet.nets): | |
raise ValueError( | |
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | |
) | |
for start, end in zip(control_guidance_start, control_guidance_end): | |
if start >= end: | |
raise ValueError( | |
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
) | |
if start < 0.0: | |
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | |
if end > 1.0: | |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
raise ValueError( | |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
) | |
if ip_adapter_image_embeds is not None: | |
if not isinstance(ip_adapter_image_embeds, list): | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | |
) | |
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | |
) | |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image | |
def check_image(self, image, prompt, prompt_embeds): | |
image_is_pil = isinstance(image, PIL.Image.Image) | |
image_is_tensor = isinstance(image, torch.Tensor) | |
image_is_np = isinstance(image, np.ndarray) | |
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
if ( | |
not image_is_pil | |
and not image_is_tensor | |
and not image_is_np | |
and not image_is_pil_list | |
and not image_is_tensor_list | |
and not image_is_np_list | |
): | |
raise TypeError( | |
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
) | |
if image_is_pil: | |
image_batch_size = 1 | |
else: | |
image_batch_size = len(image) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image | |
def prepare_control_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
if hasattr(self.scheduler, "set_begin_index"): | |
self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents | |
def prepare_latents( | |
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, repeat_noise, generator=None | |
): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
init_latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
shape = init_latents.shape | |
if repeat_noise: | |
noise = randn_tensor((1, *shape[1:]), generator=generator, device=device, dtype=dtype) | |
one_tuple = (1,) * (len(shape) - 1) | |
noise = noise.repeat(batch_size, *one_tuple) | |
else: | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
return latents | |
def guidance_scale(self): | |
return self._guidance_scale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
frames: Union[List[np.ndarray], torch.FloatTensor] = None, | |
control_frames: Union[List[np.ndarray], torch.FloatTensor] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
strength: float = 0.8, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 0.8, | |
guess_mode: bool = False, | |
control_guidance_start: Union[float, List[float]] = 0.0, | |
control_guidance_end: Union[float, List[float]] = 1.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
end_opt_step=15, | |
num_intraattn_steps=1, | |
step_interattn_end=350, | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process. | |
control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
strength (`float`, *optional*, defaults to 0.8): | |
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
essentially ignores `image`. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
the corresponding scale as a list. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
The ControlNet encoder tries to recognize the content of the input image even if you remove all | |
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | |
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
The percentage of total steps at which the ControlNet starts applying. | |
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The percentage of total steps at which the ControlNet stops applying. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
end_opt_step: | |
The feature optimization is activated from strength * num_inference_step to end_opt_step. | |
num_intraattn_steps: | |
Apply num_interattn_steps steps of spatial-guided attention. | |
step_interattn_end: | |
Apply temporal-guided attention in [step_interattn_end, 1000] steps | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
# align format for control guidance | |
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | |
control_guidance_start, control_guidance_end = ( | |
mult * [control_guidance_start], | |
mult * [control_guidance_end], | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
control_frames[0], | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
controlnet_conditioning_scale, | |
control_guidance_start, | |
control_guidance_end, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
# 2. Define call parameters | |
batch_size = len(frames) | |
device = self._execution_device | |
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
global_pool_conditions = ( | |
controlnet.config.global_pool_conditions | |
if isinstance(controlnet, ControlNetModel) | |
else controlnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 4. Prepare image | |
imgs_np = [] | |
for frame in frames: | |
if isinstance(frame, PIL.Image.Image): | |
imgs_np.append(np.asarray(frame)) | |
else: | |
# np.ndarray | |
imgs_np.append(frame) | |
images_pt = self.image_processor.preprocess(frames).to(dtype=torch.float32) | |
# 5. Prepare controlnet_conditioning_image | |
if isinstance(controlnet, ControlNetModel): | |
control_image = self.prepare_control_image( | |
image=control_frames, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
elif isinstance(controlnet, MultiControlNetModel): | |
control_images = [] | |
for control_image_ in control_frames: | |
control_image_ = self.prepare_control_image( | |
image=control_image_, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
control_images.append(control_image_) | |
control_image = control_images | |
else: | |
assert False | |
self.flow_model.to(device) | |
flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(self.flow_model, imgs_np) | |
correlation_matrix = get_intraframe_paras(self, images_pt, self.frescoProc, prompt_embeds, generator) | |
""" | |
Flexible settings for attention: | |
* Turn off FRESCO-guided attention: frescoProc.controller.disable_controller() | |
Then you can turn on one specific attention submodule | |
* Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask) | |
* Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn() | |
* Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras) | |
Flexible settings for optimization: | |
* Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt() | |
* Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt() | |
* Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe) | |
Flexible settings for background smoothing: | |
* Turn off background smoothing: set saliency = None in apply_FRESCO_opt() | |
""" | |
self.frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
apply_FRESCO_opt( | |
self, | |
steps=timesteps[:end_opt_step], | |
flows=flows, | |
occs=occs, | |
correlation_matrix=correlation_matrix, | |
saliency=None, | |
optimize_temporal=True, | |
) | |
clear_cache() | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
self._num_timesteps = len(timesteps) | |
# 6. Prepare latent variables | |
latents = self.prepare_latents( | |
images_pt, | |
latent_timestep, | |
batch_size, | |
num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator=generator, | |
repeat_noise=True, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
# 7.2 Create tensor stating which controlnets to keep | |
controlnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if i >= num_intraattn_steps: | |
self.frescoProc.controller.disable_intraattn() | |
if t < step_interattn_end: | |
self.frescoProc.controller.disable_interattn() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# controlnet(s) inference | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latents | |
control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=control_image, | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
) | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# If we do sequential model offloading, let's offload unet and controlnet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
self.controlnet.to("cpu") | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
0 | |
] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |