UltraEdit-SD3 / UltraEdit /diffusers /tests /schedulers /test_scheduler_edm_euler.py
BleachNick's picture
upload required packages
87d40d2
raw
history blame
8.39 kB
import inspect
import tempfile
import unittest
from typing import Dict, List, Tuple
import torch
from diffusers import EDMEulerScheduler
from .test_schedulers import SchedulerCommonTest
class EDMEulerSchedulerTest(SchedulerCommonTest):
scheduler_classes = (EDMEulerScheduler,)
forward_default_kwargs = (("num_inference_steps", 10),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 256,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
def test_full_loop_no_noise(self, num_inference_steps=10, seed=0):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(scheduler.timesteps):
scaled_sample = scheduler.scale_model_input(sample, t)
model_output = model(scaled_sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 34.1855) < 1e-3
assert abs(result_mean.item() - 0.044) < 1e-3
def test_full_loop_device(self, num_inference_steps=10, seed=0):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(scheduler.timesteps):
scaled_sample = scheduler.scale_model_input(sample, t)
model_output = model(scaled_sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 34.1855) < 1e-3
assert abs(result_mean.item() - 0.044) < 1e-3
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
def test_from_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
timestep = scheduler.timesteps[0]
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, timestep)
residual = 0.1 * scaled_sample
new_scaled_sample = new_scheduler.scale_model_input(sample, timestep)
new_residual = 0.1 * new_scaled_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(new_residual, timestep, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
def test_step_shape(self):
num_inference_steps = 10
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep_0 = scheduler.timesteps[0]
timestep_1 = scheduler.timesteps[1]
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, timestep_0)
residual = 0.1 * scaled_sample
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
# Override test_from_save_pretrained to use EDMEulerScheduler-specific logic
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", 50)
timestep = 0
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep = scheduler.timesteps[0]
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, timestep)
residual = 0.1 * scaled_sample
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
scheduler.set_timesteps(num_inference_steps)
scaled_sample = scheduler.scale_model_input(sample, timestep)
residual = 0.1 * scaled_sample
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
@unittest.skip(reason="EDMEulerScheduler does not support beta schedules.")
def test_trained_betas(self):
pass