Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Conversion script for stable diffusion checkpoints which _only_ contain a controlnet.""" | |
import argparse | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--original_config_file", | |
type=str, | |
required=True, | |
help="The YAML config file corresponding to the original architecture.", | |
) | |
parser.add_argument( | |
"--num_in_channels", | |
default=None, | |
type=int, | |
help="The number of input channels. If `None` number of input channels will be automatically inferred.", | |
) | |
parser.add_argument( | |
"--image_size", | |
default=512, | |
type=int, | |
help=( | |
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" | |
" Base. Use 768 for Stable Diffusion v2." | |
), | |
) | |
parser.add_argument( | |
"--extract_ema", | |
action="store_true", | |
help=( | |
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
), | |
) | |
parser.add_argument( | |
"--upcast_attention", | |
action="store_true", | |
help=( | |
"Whether the attention computation should always be upcasted. This is necessary when running stable" | |
" diffusion 2.1." | |
), | |
) | |
parser.add_argument( | |
"--from_safetensors", | |
action="store_true", | |
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", | |
) | |
parser.add_argument( | |
"--to_safetensors", | |
action="store_true", | |
help="Whether to store pipeline in safetensors format or not.", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
# small workaround to get argparser to parse a boolean input as either true _or_ false | |
def parse_bool(string): | |
if string == "True": | |
return True | |
elif string == "False": | |
return False | |
else: | |
raise ValueError(f"could not parse string as bool {string}") | |
parser.add_argument( | |
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool | |
) | |
parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) | |
args = parser.parse_args() | |
controlnet = download_controlnet_from_original_ckpt( | |
checkpoint_path=args.checkpoint_path, | |
original_config_file=args.original_config_file, | |
image_size=args.image_size, | |
extract_ema=args.extract_ema, | |
num_in_channels=args.num_in_channels, | |
upcast_attention=args.upcast_attention, | |
from_safetensors=args.from_safetensors, | |
device=args.device, | |
use_linear_projection=args.use_linear_projection, | |
cross_attention_dim=args.cross_attention_dim, | |
) | |
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |