Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import copy | |
import logging | |
import math | |
import os | |
import shutil | |
from contextlib import nullcontext | |
from pathlib import Path | |
import torch | |
import torch.nn.functional as F | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from datasets import load_dataset | |
from peft import LoraConfig | |
from peft.utils import get_peft_model_state_dict | |
from PIL import Image | |
from PIL.ImageOps import exif_transpose | |
from torch.utils.data import DataLoader, Dataset, default_collate | |
from torchvision import transforms | |
from transformers import ( | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
) | |
import diffusers.optimization | |
from diffusers import AmusedPipeline, AmusedScheduler, EMAModel, UVit2DModel, VQModel | |
from diffusers.loaders import LoraLoaderMixin | |
from diffusers.utils import is_wandb_available | |
if is_wandb_available(): | |
import wandb | |
logger = get_logger(__name__, log_level="INFO") | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--instance_data_dataset", | |
type=str, | |
default=None, | |
required=False, | |
help="A Hugging Face dataset containing the training images", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
required=False, | |
help="A folder containing the training data of instance images.", | |
) | |
parser.add_argument( | |
"--instance_data_image", type=str, default=None, required=False, help="A single training image" | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
parser.add_argument("--ema_decay", type=float, default=0.9999) | |
parser.add_argument("--ema_update_after_step", type=int, default=0) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="muse_training", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
"instructions." | |
), | |
) | |
parser.add_argument( | |
"--logging_steps", | |
type=int, | |
default=50, | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=( | |
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
" for more details" | |
), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=0.0003, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="wandb", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument("--validation_prompts", type=str, nargs="*") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument("--split_vae_encode", type=int, required=False, default=None) | |
parser.add_argument("--min_masking_rate", type=float, default=0.0) | |
parser.add_argument("--cond_dropout_prob", type=float, default=0.0) | |
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.", required=False) | |
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa") | |
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa") | |
parser.add_argument("--lora_r", default=16, type=int) | |
parser.add_argument("--lora_alpha", default=32, type=int) | |
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+") | |
parser.add_argument("--text_encoder_lora_r", default=16, type=int) | |
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int) | |
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+") | |
parser.add_argument("--train_text_encoder", action="store_true") | |
parser.add_argument("--image_key", type=str, required=False) | |
parser.add_argument("--prompt_key", type=str, required=False) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument("--prompt_prefix", type=str, required=False, default=None) | |
args = parser.parse_args() | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
num_datasources = sum( | |
[x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]] | |
) | |
if num_datasources != 1: | |
raise ValueError( | |
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`" | |
) | |
if args.instance_data_dir is not None: | |
if not os.path.exists(args.instance_data_dir): | |
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}") | |
if args.instance_data_image is not None: | |
if not os.path.exists(args.instance_data_image): | |
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}") | |
if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None): | |
raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`") | |
return args | |
class InstanceDataRootDataset(Dataset): | |
def __init__( | |
self, | |
instance_data_root, | |
tokenizer, | |
size=512, | |
): | |
self.size = size | |
self.tokenizer = tokenizer | |
self.instance_images_path = list(Path(instance_data_root).iterdir()) | |
def __len__(self): | |
return len(self.instance_images_path) | |
def __getitem__(self, index): | |
image_path = self.instance_images_path[index % len(self.instance_images_path)] | |
instance_image = Image.open(image_path) | |
rv = process_image(instance_image, self.size) | |
prompt = os.path.splitext(os.path.basename(image_path))[0] | |
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0] | |
return rv | |
class InstanceDataImageDataset(Dataset): | |
def __init__( | |
self, | |
instance_data_image, | |
train_batch_size, | |
size=512, | |
): | |
self.value = process_image(Image.open(instance_data_image), size) | |
self.train_batch_size = train_batch_size | |
def __len__(self): | |
# Needed so a full batch of the data can be returned. Otherwise will return | |
# batches of size 1 | |
return self.train_batch_size | |
def __getitem__(self, index): | |
return self.value | |
class HuggingFaceDataset(Dataset): | |
def __init__( | |
self, | |
hf_dataset, | |
tokenizer, | |
image_key, | |
prompt_key, | |
prompt_prefix=None, | |
size=512, | |
): | |
self.size = size | |
self.image_key = image_key | |
self.prompt_key = prompt_key | |
self.tokenizer = tokenizer | |
self.hf_dataset = hf_dataset | |
self.prompt_prefix = prompt_prefix | |
def __len__(self): | |
return len(self.hf_dataset) | |
def __getitem__(self, index): | |
item = self.hf_dataset[index] | |
rv = process_image(item[self.image_key], self.size) | |
prompt = item[self.prompt_key] | |
if self.prompt_prefix is not None: | |
prompt = self.prompt_prefix + prompt | |
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0] | |
return rv | |
def process_image(image, size): | |
image = exif_transpose(image) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
orig_height = image.height | |
orig_width = image.width | |
image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image) | |
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size)) | |
image = transforms.functional.crop(image, c_top, c_left, size, size) | |
image = transforms.ToTensor()(image) | |
micro_conds = torch.tensor( | |
[orig_width, orig_height, c_top, c_left, 6.0], | |
) | |
return {"image": image, "micro_conds": micro_conds} | |
def tokenize_prompt(tokenizer, prompt): | |
return tokenizer( | |
prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt", | |
).input_ids | |
def encode_prompt(text_encoder, input_ids): | |
outputs = text_encoder(input_ids, return_dict=True, output_hidden_states=True) | |
encoder_hidden_states = outputs.hidden_states[-2] | |
cond_embeds = outputs[0] | |
return encoder_hidden_states, cond_embeds | |
def main(args): | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
# Disable AMP for MPS. | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
if accelerator.is_main_process: | |
os.makedirs(args.output_dir, exist_ok=True) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_main_process: | |
accelerator.init_trackers("amused", config=vars(copy.deepcopy(args))) | |
if args.seed is not None: | |
set_seed(args.seed) | |
# TODO - will have to fix loading if training text encoder | |
text_encoder = CLIPTextModelWithProjection.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant | |
) | |
vq_model = VQModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant | |
) | |
if args.train_text_encoder: | |
if args.text_encoder_use_lora: | |
lora_config = LoraConfig( | |
r=args.text_encoder_lora_r, | |
lora_alpha=args.text_encoder_lora_alpha, | |
target_modules=args.text_encoder_lora_target_modules, | |
) | |
text_encoder.add_adapter(lora_config) | |
text_encoder.train() | |
text_encoder.requires_grad_(True) | |
else: | |
text_encoder.eval() | |
text_encoder.requires_grad_(False) | |
vq_model.requires_grad_(False) | |
model = UVit2DModel.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="transformer", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
if args.use_lora: | |
lora_config = LoraConfig( | |
r=args.lora_r, | |
lora_alpha=args.lora_alpha, | |
target_modules=args.lora_target_modules, | |
) | |
model.add_adapter(lora_config) | |
model.train() | |
if args.gradient_checkpointing: | |
model.enable_gradient_checkpointing() | |
if args.train_text_encoder: | |
text_encoder.gradient_checkpointing_enable() | |
if args.use_ema: | |
ema = EMAModel( | |
model.parameters(), | |
decay=args.ema_decay, | |
update_after_step=args.ema_update_after_step, | |
model_cls=UVit2DModel, | |
model_config=model.config, | |
) | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
transformer_lora_layers_to_save = None | |
text_encoder_lora_layers_to_save = None | |
for model_ in models: | |
if isinstance(model_, type(accelerator.unwrap_model(model))): | |
if args.use_lora: | |
transformer_lora_layers_to_save = get_peft_model_state_dict(model_) | |
else: | |
model_.save_pretrained(os.path.join(output_dir, "transformer")) | |
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))): | |
if args.text_encoder_use_lora: | |
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_) | |
else: | |
model_.save_pretrained(os.path.join(output_dir, "text_encoder")) | |
else: | |
raise ValueError(f"unexpected save model: {model_.__class__}") | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None: | |
LoraLoaderMixin.save_lora_weights( | |
output_dir, | |
transformer_lora_layers=transformer_lora_layers_to_save, | |
text_encoder_lora_layers=text_encoder_lora_layers_to_save, | |
) | |
if args.use_ema: | |
ema.save_pretrained(os.path.join(output_dir, "ema_model")) | |
def load_model_hook(models, input_dir): | |
transformer = None | |
text_encoder_ = None | |
while len(models) > 0: | |
model_ = models.pop() | |
if isinstance(model_, type(accelerator.unwrap_model(model))): | |
if args.use_lora: | |
transformer = model_ | |
else: | |
load_model = UVit2DModel.from_pretrained(os.path.join(input_dir, "transformer")) | |
model_.load_state_dict(load_model.state_dict()) | |
del load_model | |
elif isinstance(model, type(accelerator.unwrap_model(text_encoder))): | |
if args.text_encoder_use_lora: | |
text_encoder_ = model_ | |
else: | |
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder")) | |
model_.load_state_dict(load_model.state_dict()) | |
del load_model | |
else: | |
raise ValueError(f"unexpected save model: {model.__class__}") | |
if transformer is not None or text_encoder_ is not None: | |
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) | |
LoraLoaderMixin.load_lora_into_text_encoder( | |
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_ | |
) | |
LoraLoaderMixin.load_lora_into_transformer( | |
lora_state_dict, network_alphas=network_alphas, transformer=transformer | |
) | |
if args.use_ema: | |
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=UVit2DModel) | |
ema.load_state_dict(load_from.state_dict()) | |
del load_from | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
) | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
) | |
optimizer_cls = bnb.optim.AdamW8bit | |
else: | |
optimizer_cls = torch.optim.AdamW | |
# no decay on bias and layernorm and embedding | |
no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
"weight_decay": args.adam_weight_decay, | |
}, | |
{ | |
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], | |
"weight_decay": 0.0, | |
}, | |
] | |
if args.train_text_encoder: | |
optimizer_grouped_parameters.append( | |
{"params": text_encoder.parameters(), "weight_decay": args.adam_weight_decay} | |
) | |
optimizer = optimizer_cls( | |
optimizer_grouped_parameters, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
logger.info("Creating dataloaders and lr_scheduler") | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
if args.instance_data_dir is not None: | |
dataset = InstanceDataRootDataset( | |
instance_data_root=args.instance_data_dir, | |
tokenizer=tokenizer, | |
size=args.resolution, | |
) | |
elif args.instance_data_image is not None: | |
dataset = InstanceDataImageDataset( | |
instance_data_image=args.instance_data_image, | |
train_batch_size=args.train_batch_size, | |
size=args.resolution, | |
) | |
elif args.instance_data_dataset is not None: | |
dataset = HuggingFaceDataset( | |
hf_dataset=load_dataset(args.instance_data_dataset, split="train"), | |
tokenizer=tokenizer, | |
image_key=args.image_key, | |
prompt_key=args.prompt_key, | |
prompt_prefix=args.prompt_prefix, | |
size=args.resolution, | |
) | |
else: | |
assert False | |
train_dataloader = DataLoader( | |
dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
num_workers=args.dataloader_num_workers, | |
collate_fn=default_collate, | |
) | |
train_dataloader.num_batches = len(train_dataloader) | |
lr_scheduler = diffusers.optimization.get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
) | |
logger.info("Preparing model, optimizer and dataloaders") | |
if args.train_text_encoder: | |
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare( | |
model, optimizer, lr_scheduler, train_dataloader, text_encoder | |
) | |
else: | |
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare( | |
model, optimizer, lr_scheduler, train_dataloader | |
) | |
train_dataloader.num_batches = len(train_dataloader) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
if not args.train_text_encoder: | |
text_encoder.to(device=accelerator.device, dtype=weight_dtype) | |
vq_model.to(device=accelerator.device) | |
if args.use_ema: | |
ema.to(accelerator.device) | |
with nullcontext() if args.train_text_encoder else torch.no_grad(): | |
empty_embeds, empty_clip_embeds = encode_prompt( | |
text_encoder, tokenize_prompt(tokenizer, "").to(text_encoder.device, non_blocking=True) | |
) | |
# There is a single image, we can just pre-encode the single prompt | |
if args.instance_data_image is not None: | |
prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0] | |
encoder_hidden_states, cond_embeds = encode_prompt( | |
text_encoder, tokenize_prompt(tokenizer, prompt).to(text_encoder.device, non_blocking=True) | |
) | |
encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1) | |
cond_embeds = cond_embeds.repeat(args.train_batch_size, 1) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) | |
# Afterwards we recalculate our number of training epochs. | |
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to | |
# reuse the same training loop with other datasets/loaders. | |
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(f" Num training steps = {args.max_train_steps}") | |
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
resume_from_checkpoint = args.resume_from_checkpoint | |
if resume_from_checkpoint: | |
if resume_from_checkpoint == "latest": | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
if len(dirs) > 0: | |
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1]) | |
else: | |
resume_from_checkpoint = None | |
if resume_from_checkpoint is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
else: | |
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}") | |
if resume_from_checkpoint is None: | |
global_step = 0 | |
first_epoch = 0 | |
else: | |
accelerator.load_state(resume_from_checkpoint) | |
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1]) | |
first_epoch = global_step // num_update_steps_per_epoch | |
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to | |
# reuse the same training loop with other datasets/loaders. | |
for epoch in range(first_epoch, num_train_epochs): | |
for batch in train_dataloader: | |
with torch.no_grad(): | |
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True) | |
pixel_values = batch["image"].to(accelerator.device, non_blocking=True) | |
batch_size = pixel_values.shape[0] | |
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size | |
num_splits = math.ceil(batch_size / split_batch_size) | |
image_tokens = [] | |
for i in range(num_splits): | |
start_idx = i * split_batch_size | |
end_idx = min((i + 1) * split_batch_size, batch_size) | |
bs = pixel_values.shape[0] | |
image_tokens.append( | |
vq_model.quantize(vq_model.encode(pixel_values[start_idx:end_idx]).latents)[2][2].reshape( | |
bs, -1 | |
) | |
) | |
image_tokens = torch.cat(image_tokens, dim=0) | |
batch_size, seq_len = image_tokens.shape | |
timesteps = torch.rand(batch_size, device=image_tokens.device) | |
mask_prob = torch.cos(timesteps * math.pi * 0.5) | |
mask_prob = mask_prob.clip(args.min_masking_rate) | |
num_token_masked = (seq_len * mask_prob).round().clamp(min=1) | |
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1) | |
mask = batch_randperm < num_token_masked.unsqueeze(-1) | |
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1 | |
input_ids = torch.where(mask, mask_id, image_tokens) | |
labels = torch.where(mask, image_tokens, -100) | |
if args.cond_dropout_prob > 0.0: | |
assert encoder_hidden_states is not None | |
batch_size = encoder_hidden_states.shape[0] | |
mask = ( | |
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1) | |
< args.cond_dropout_prob | |
) | |
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1) | |
encoder_hidden_states = torch.where( | |
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_ | |
) | |
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1) | |
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_) | |
bs = input_ids.shape[0] | |
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1) | |
resolution = args.resolution // vae_scale_factor | |
input_ids = input_ids.reshape(bs, resolution, resolution) | |
if "prompt_input_ids" in batch: | |
with nullcontext() if args.train_text_encoder else torch.no_grad(): | |
encoder_hidden_states, cond_embeds = encode_prompt( | |
text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True) | |
) | |
# Train Step | |
with accelerator.accumulate(model): | |
codebook_size = accelerator.unwrap_model(model).config.codebook_size | |
logits = ( | |
model( | |
input_ids=input_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
micro_conds=micro_conds, | |
pooled_text_emb=cond_embeds, | |
) | |
.reshape(bs, codebook_size, -1) | |
.permute(0, 2, 1) | |
.reshape(-1, codebook_size) | |
) | |
loss = F.cross_entropy( | |
logits, | |
labels.view(-1), | |
ignore_index=-100, | |
reduction="mean", | |
) | |
# Gather the losses across all processes for logging (if we use distributed training). | |
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean() | |
accelerator.backward(loss) | |
if args.max_grad_norm is not None and accelerator.sync_gradients: | |
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=True) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if args.use_ema: | |
ema.step(model.parameters()) | |
if (global_step + 1) % args.logging_steps == 0: | |
logs = { | |
"step_loss": avg_loss.item(), | |
"lr": lr_scheduler.get_last_lr()[0], | |
"avg_masking_rate": avg_masking_rate.item(), | |
} | |
accelerator.log(logs, step=global_step + 1) | |
logger.info( | |
f"Step: {global_step + 1} " | |
f"Loss: {avg_loss.item():0.4f} " | |
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}" | |
) | |
if (global_step + 1) % args.checkpointing_steps == 0: | |
save_checkpoint(args, accelerator, global_step + 1) | |
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process: | |
if args.use_ema: | |
ema.store(model.parameters()) | |
ema.copy_to(model.parameters()) | |
with torch.no_grad(): | |
logger.info("Generating images...") | |
model.eval() | |
if args.train_text_encoder: | |
text_encoder.eval() | |
scheduler = AmusedScheduler.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="scheduler", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
pipe = AmusedPipeline( | |
transformer=accelerator.unwrap_model(model), | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vqvae=vq_model, | |
scheduler=scheduler, | |
) | |
pil_images = pipe(prompt=args.validation_prompts).images | |
wandb_images = [ | |
wandb.Image(image, caption=args.validation_prompts[i]) | |
for i, image in enumerate(pil_images) | |
] | |
wandb.log({"generated_images": wandb_images}, step=global_step + 1) | |
model.train() | |
if args.train_text_encoder: | |
text_encoder.train() | |
if args.use_ema: | |
ema.restore(model.parameters()) | |
global_step += 1 | |
# Stop training if max steps is reached | |
if global_step >= args.max_train_steps: | |
break | |
# End for | |
accelerator.wait_for_everyone() | |
# Evaluate and save checkpoint at the end of training | |
save_checkpoint(args, accelerator, global_step) | |
# Save the final trained checkpoint | |
if accelerator.is_main_process: | |
model = accelerator.unwrap_model(model) | |
if args.use_ema: | |
ema.copy_to(model.parameters()) | |
model.save_pretrained(args.output_dir) | |
accelerator.end_training() | |
def save_checkpoint(args, accelerator, global_step): | |
output_dir = args.output_dir | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if accelerator.is_main_process and args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = Path(output_dir) / f"checkpoint-{global_step}" | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if __name__ == "__main__": | |
main(parse_args()) | |