Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
import warnings | |
from contextlib import nullcontext | |
from pathlib import Path | |
import numpy as np | |
import PIL | |
import safetensors | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from huggingface_hub import create_repo, upload_folder | |
# TODO: remove and import from diffusers.utils when the new version of diffusers is released | |
from packaging import version | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version, is_wandb_available | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.import_utils import is_xformers_available | |
if is_wandb_available(): | |
import wandb | |
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | |
PIL_INTERPOLATION = { | |
"linear": PIL.Image.Resampling.BILINEAR, | |
"bilinear": PIL.Image.Resampling.BILINEAR, | |
"bicubic": PIL.Image.Resampling.BICUBIC, | |
"lanczos": PIL.Image.Resampling.LANCZOS, | |
"nearest": PIL.Image.Resampling.NEAREST, | |
} | |
else: | |
PIL_INTERPOLATION = { | |
"linear": PIL.Image.LINEAR, | |
"bilinear": PIL.Image.BILINEAR, | |
"bicubic": PIL.Image.BICUBIC, | |
"lanczos": PIL.Image.LANCZOS, | |
"nearest": PIL.Image.NEAREST, | |
} | |
# ------------------------------------------------------------------------------ | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.30.0.dev0") | |
logger = get_logger(__name__) | |
def save_model_card(repo_id: str, images: list = None, base_model: str = None, repo_folder: str = None): | |
img_str = "" | |
if images is not None: | |
for i, image in enumerate(images): | |
image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
img_str += f"![img_{i}](./image_{i}.png)\n" | |
model_description = f""" | |
# Textual inversion text2image fine-tuning - {repo_id} | |
These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \n | |
{img_str} | |
""" | |
model_card = load_or_create_model_card( | |
repo_id_or_path=repo_id, | |
from_training=True, | |
license="creativeml-openrail-m", | |
base_model=base_model, | |
model_description=model_description, | |
inference=True, | |
) | |
tags = [ | |
"stable-diffusion", | |
"stable-diffusion-diffusers", | |
"text-to-image", | |
"diffusers", | |
"textual_inversion", | |
"diffusers-training", | |
] | |
model_card = populate_model_card(model_card, tags=tags) | |
model_card.save(os.path.join(repo_folder, "README.md")) | |
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch): | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
f" {args.validation_prompt}." | |
) | |
# create pipeline (note: unet and vae are loaded again in float32) | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
text_encoder=accelerator.unwrap_model(text_encoder), | |
tokenizer=tokenizer, | |
unet=unet, | |
vae=vae, | |
safety_checker=None, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
# run inference | |
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
images = [] | |
for _ in range(args.num_validation_images): | |
if torch.backends.mps.is_available(): | |
autocast_ctx = nullcontext() | |
else: | |
autocast_ctx = torch.autocast(accelerator.device.type) | |
with autocast_ctx: | |
image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] | |
images.append(image) | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
"validation": [ | |
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) | |
] | |
} | |
) | |
del pipeline | |
torch.cuda.empty_cache() | |
return images | |
def save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path, safe_serialization=True): | |
logger.info("Saving embeddings") | |
learned_embeds = ( | |
accelerator.unwrap_model(text_encoder) | |
.get_input_embeddings() | |
.weight[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] | |
) | |
learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()} | |
if safe_serialization: | |
safetensors.torch.save_file(learned_embeds_dict, save_path, metadata={"format": "pt"}) | |
else: | |
torch.save(learned_embeds_dict, save_path) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--save_steps", | |
type=int, | |
default=500, | |
help="Save learned_embeds.bin every X updates steps.", | |
) | |
parser.add_argument( | |
"--save_as_full_pipeline", | |
action="store_true", | |
help="Save the complete stable diffusion pipeline.", | |
) | |
parser.add_argument( | |
"--num_vectors", | |
type=int, | |
default=1, | |
help="How many textual inversion vectors shall be used to learn the concept.", | |
) | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." | |
) | |
parser.add_argument( | |
"--placeholder_token", | |
type=str, | |
default=None, | |
required=True, | |
help="A token to use as a placeholder for the concept.", | |
) | |
parser.add_argument( | |
"--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." | |
) | |
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") | |
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="text-inversion-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=100) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=5000, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="no", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose" | |
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
"and Nvidia Ampere GPU or Intel Gen 4 Xeon (and later) ." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="A prompt that is used during validation to verify that the model is learning.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=4, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=None, | |
help=( | |
"Deprecated in favor of validation_steps. Run validation every X epochs. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--no_safe_serialization", | |
action="store_true", | |
help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.", | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.train_data_dir is None: | |
raise ValueError("You must specify a train data directory.") | |
return args | |
imagenet_templates_small = [ | |
"a photo of a {}", | |
"a rendering of a {}", | |
"a cropped photo of the {}", | |
"the photo of a {}", | |
"a photo of a clean {}", | |
"a photo of a dirty {}", | |
"a dark photo of the {}", | |
"a photo of my {}", | |
"a photo of the cool {}", | |
"a close-up photo of a {}", | |
"a bright photo of the {}", | |
"a cropped photo of a {}", | |
"a photo of the {}", | |
"a good photo of the {}", | |
"a photo of one {}", | |
"a close-up photo of the {}", | |
"a rendition of the {}", | |
"a photo of the clean {}", | |
"a rendition of a {}", | |
"a photo of a nice {}", | |
"a good photo of a {}", | |
"a photo of the nice {}", | |
"a photo of the small {}", | |
"a photo of the weird {}", | |
"a photo of the large {}", | |
"a photo of a cool {}", | |
"a photo of a small {}", | |
] | |
imagenet_style_templates_small = [ | |
"a painting in the style of {}", | |
"a rendering in the style of {}", | |
"a cropped painting in the style of {}", | |
"the painting in the style of {}", | |
"a clean painting in the style of {}", | |
"a dirty painting in the style of {}", | |
"a dark painting in the style of {}", | |
"a picture in the style of {}", | |
"a cool painting in the style of {}", | |
"a close-up painting in the style of {}", | |
"a bright painting in the style of {}", | |
"a cropped painting in the style of {}", | |
"a good painting in the style of {}", | |
"a close-up painting in the style of {}", | |
"a rendition in the style of {}", | |
"a nice painting in the style of {}", | |
"a small painting in the style of {}", | |
"a weird painting in the style of {}", | |
"a large painting in the style of {}", | |
] | |
class TextualInversionDataset(Dataset): | |
def __init__( | |
self, | |
data_root, | |
tokenizer, | |
learnable_property="object", # [object, style] | |
size=512, | |
repeats=100, | |
interpolation="bicubic", | |
flip_p=0.5, | |
set="train", | |
placeholder_token="*", | |
center_crop=False, | |
): | |
self.data_root = data_root | |
self.tokenizer = tokenizer | |
self.learnable_property = learnable_property | |
self.size = size | |
self.placeholder_token = placeholder_token | |
self.center_crop = center_crop | |
self.flip_p = flip_p | |
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] | |
self.num_images = len(self.image_paths) | |
self._length = self.num_images | |
if set == "train": | |
self._length = self.num_images * repeats | |
self.interpolation = { | |
"linear": PIL_INTERPOLATION["linear"], | |
"bilinear": PIL_INTERPOLATION["bilinear"], | |
"bicubic": PIL_INTERPOLATION["bicubic"], | |
"lanczos": PIL_INTERPOLATION["lanczos"], | |
}[interpolation] | |
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small | |
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) | |
def __len__(self): | |
return self._length | |
def __getitem__(self, i): | |
example = {} | |
image = Image.open(self.image_paths[i % self.num_images]) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
placeholder_string = self.placeholder_token | |
text = random.choice(self.templates).format(placeholder_string) | |
example["input_ids"] = self.tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids[0] | |
# default to score-sde preprocessing | |
img = np.array(image).astype(np.uint8) | |
if self.center_crop: | |
crop = min(img.shape[0], img.shape[1]) | |
( | |
h, | |
w, | |
) = ( | |
img.shape[0], | |
img.shape[1], | |
) | |
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] | |
image = Image.fromarray(img) | |
image = image.resize((self.size, self.size), resample=self.interpolation) | |
image = self.flip_transform(image) | |
image = np.array(image).astype(np.uint8) | |
image = (image / 127.5 - 1.0).astype(np.float32) | |
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) | |
return example | |
def main(): | |
args = parse_args() | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
# Disable AMP for MPS. | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load tokenizer | |
if args.tokenizer_name: | |
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
text_encoder = CLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
) | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
) | |
# Add the placeholder token in tokenizer | |
placeholder_tokens = [args.placeholder_token] | |
if args.num_vectors < 1: | |
raise ValueError(f"--num_vectors has to be larger or equal to 1, but is {args.num_vectors}") | |
# add dummy tokens for multi-vector | |
additional_tokens = [] | |
for i in range(1, args.num_vectors): | |
additional_tokens.append(f"{args.placeholder_token}_{i}") | |
placeholder_tokens += additional_tokens | |
num_added_tokens = tokenizer.add_tokens(placeholder_tokens) | |
if num_added_tokens != args.num_vectors: | |
raise ValueError( | |
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" | |
" `placeholder_token` that is not already in the tokenizer." | |
) | |
# Convert the initializer_token, placeholder_token to ids | |
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | |
# Check if initializer_token is a single token or a sequence of tokens | |
if len(token_ids) > 1: | |
raise ValueError("The initializer token must be a single token.") | |
initializer_token_id = token_ids[0] | |
placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens) | |
# Resize the token embeddings as we are adding new special tokens to the tokenizer | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
# Initialise the newly added placeholder token with the embeddings of the initializer token | |
token_embeds = text_encoder.get_input_embeddings().weight.data | |
with torch.no_grad(): | |
for token_id in placeholder_token_ids: | |
token_embeds[token_id] = token_embeds[initializer_token_id].clone() | |
# Freeze vae and unet | |
vae.requires_grad_(False) | |
unet.requires_grad_(False) | |
# Freeze all parameters except for the token embeddings in text encoder | |
text_encoder.text_model.encoder.requires_grad_(False) | |
text_encoder.text_model.final_layer_norm.requires_grad_(False) | |
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | |
if args.gradient_checkpointing: | |
# Keep unet in train mode if we are using gradient checkpointing to save memory. | |
# The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode. | |
unet.train() | |
text_encoder.gradient_checkpointing_enable() | |
unet.enable_gradient_checkpointing() | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warning( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Initialize the optimizer | |
optimizer = torch.optim.AdamW( | |
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# Dataset and DataLoaders creation: | |
train_dataset = TextualInversionDataset( | |
data_root=args.train_data_dir, | |
tokenizer=tokenizer, | |
size=args.resolution, | |
placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))), | |
repeats=args.repeats, | |
learnable_property=args.learnable_property, | |
center_crop=args.center_crop, | |
set="train", | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers | |
) | |
if args.validation_epochs is not None: | |
warnings.warn( | |
f"FutureWarning: You are doing logging with validation_epochs={args.validation_epochs}." | |
" Deprecated validation_epochs in favor of `validation_steps`" | |
f"Setting `args.validation_steps` to {args.validation_epochs * len(train_dataset)}", | |
FutureWarning, | |
stacklevel=2, | |
) | |
args.validation_steps = args.validation_epochs * len(train_dataset) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
) | |
text_encoder.train() | |
# Prepare everything with our `accelerator`. | |
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
text_encoder, optimizer, train_dataloader, lr_scheduler | |
) | |
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move vae and unet to device and cast to weight_dtype | |
unet.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
accelerator.init_trackers("textual_inversion", config=vars(args)) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
# keep original embeddings as reference | |
orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone() | |
for epoch in range(first_epoch, args.num_train_epochs): | |
text_encoder.train() | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(text_encoder): | |
# Convert images to latent space | |
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach() | |
latents = latents * vae.config.scaling_factor | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype) | |
# Predict the noise residual | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
accelerator.backward(loss) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Let's make sure we don't update any embedding weights besides the newly added token | |
index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool) | |
index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False | |
with torch.no_grad(): | |
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ | |
index_no_updates | |
] = orig_embeds_params[index_no_updates] | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
images = [] | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step % args.save_steps == 0: | |
weight_name = ( | |
f"learned_embeds-steps-{global_step}.bin" | |
if args.no_safe_serialization | |
else f"learned_embeds-steps-{global_step}.safetensors" | |
) | |
save_path = os.path.join(args.output_dir, weight_name) | |
save_progress( | |
text_encoder, | |
placeholder_token_ids, | |
accelerator, | |
args, | |
save_path, | |
safe_serialization=not args.no_safe_serialization, | |
) | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
images = log_validation( | |
text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch | |
) | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
if args.push_to_hub and not args.save_as_full_pipeline: | |
logger.warning("Enabling full model saving because --push_to_hub=True was specified.") | |
save_full_model = True | |
else: | |
save_full_model = args.save_as_full_pipeline | |
if save_full_model: | |
pipeline = StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
text_encoder=accelerator.unwrap_model(text_encoder), | |
vae=vae, | |
unet=unet, | |
tokenizer=tokenizer, | |
) | |
pipeline.save_pretrained(args.output_dir) | |
# Save the newly trained embeddings | |
weight_name = "learned_embeds.bin" if args.no_safe_serialization else "learned_embeds.safetensors" | |
save_path = os.path.join(args.output_dir, weight_name) | |
save_progress( | |
text_encoder, | |
placeholder_token_ids, | |
accelerator, | |
args, | |
save_path, | |
safe_serialization=not args.no_safe_serialization, | |
) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
images=images, | |
base_model=args.pretrained_model_name_or_path, | |
repo_folder=args.output_dir, | |
) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
main() | |