je010112's picture
Update app.py
9cd58e7 verified
import json
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from gtts import gTTS
from diffusers import StableDiffusionPipeline
import gradio as gr
def load_fairytale(file_obj):
data = json.loads(file_obj.read().decode("utf-8")) # read & decode
return data['title'], data['content']
def generate_grandma_voice(text):
grandma_text = f"에구구 얘야, 잘 들어보렴. {text.strip()} ... 옛날 옛적 이야기란다~"
tts = gTTS(text=grandma_text, lang='ko')
audio_path = "grandma_voice.mp3"
tts.save(audio_path)
return audio_path
emotion_tokenizer = AutoTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
emotion_model = AutoModelForSequenceClassification.from_pretrained("monologg/koelectra-base-discriminator")
def classify_emotion(text):
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = emotion_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
label = torch.argmax(probs).item()
emotions_ko = ["기쁨", "슬픔", "분노", "불안", "중립"]
emotions_en = ["joy", "sadness", "anger", "anxiety", "neutral"]
return emotions_en[label], emotions_ko[label]
stable_pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)
device = "cuda" if torch.cuda.is_available() else "cpu"
stable_pipe = stable_pipe.to(device)
def generate_emotion_image(emotion_en):
prompt = f"A dreamy digital painting that represents the feeling of {emotion_en}"
image = stable_pipe(prompt).images[0]
image_path = f"{emotion_en}_image.png"
image.save(image_path)
return image_path
def run_all(fairytale_file, child_feeling_text):
title, content = load_fairytale(fairytale_file)
audio_path = generate_grandma_voice(content[:300])
emotion_en, emotion_ko = classify_emotion(child_feeling_text)
image_path = generate_emotion_image(emotion_en)
return title, audio_path, emotion_ko, image_path
demo = gr.Interface(
fn=run_all,
inputs=[
gr.File(label="동화 JSON 파일 업로드"),
gr.Textbox(label="아이의 감상문")
],
outputs=[
gr.Text(label="동화 제목"),
gr.Audio(label="할머니 목소리"),
gr.Text(label="감정 분석 결과 (한국어)"),
gr.Image(label="감정 표현 이미지")
],
title="AI 할머니가 읽어주는 감성 동화책",
description="동화를 업로드하면 할머니가 읽어주고, 아이 감상문에 맞춰 감정 이미지를 생성합니다."
)
if __name__ == "__main__":
demo.launch()