import json import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from gtts import gTTS from diffusers import StableDiffusionPipeline import gradio as gr def load_fairytale(file_obj): data = json.loads(file_obj.read().decode("utf-8")) # read & decode return data['title'], data['content'] def generate_grandma_voice(text): grandma_text = f"에구구 얘야, 잘 들어보렴. {text.strip()} ... 옛날 옛적 이야기란다~" tts = gTTS(text=grandma_text, lang='ko') audio_path = "grandma_voice.mp3" tts.save(audio_path) return audio_path emotion_tokenizer = AutoTokenizer.from_pretrained("monologg/koelectra-base-discriminator") emotion_model = AutoModelForSequenceClassification.from_pretrained("monologg/koelectra-base-discriminator") def classify_emotion(text): inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True) with torch.no_grad(): outputs = emotion_model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1) label = torch.argmax(probs).item() emotions_ko = ["기쁨", "슬픔", "분노", "불안", "중립"] emotions_en = ["joy", "sadness", "anger", "anxiety", "neutral"] return emotions_en[label], emotions_ko[label] stable_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 ) device = "cuda" if torch.cuda.is_available() else "cpu" stable_pipe = stable_pipe.to(device) def generate_emotion_image(emotion_en): prompt = f"A dreamy digital painting that represents the feeling of {emotion_en}" image = stable_pipe(prompt).images[0] image_path = f"{emotion_en}_image.png" image.save(image_path) return image_path def run_all(fairytale_file, child_feeling_text): title, content = load_fairytale(fairytale_file) audio_path = generate_grandma_voice(content[:300]) emotion_en, emotion_ko = classify_emotion(child_feeling_text) image_path = generate_emotion_image(emotion_en) return title, audio_path, emotion_ko, image_path demo = gr.Interface( fn=run_all, inputs=[ gr.File(label="동화 JSON 파일 업로드"), gr.Textbox(label="아이의 감상문") ], outputs=[ gr.Text(label="동화 제목"), gr.Audio(label="할머니 목소리"), gr.Text(label="감정 분석 결과 (한국어)"), gr.Image(label="감정 표현 이미지") ], title="AI 할머니가 읽어주는 감성 동화책", description="동화를 업로드하면 할머니가 읽어주고, 아이 감상문에 맞춰 감정 이미지를 생성합니다." ) if __name__ == "__main__": demo.launch()