Spaces:
Paused
Paused
| import os | |
| import torch | |
| import gradio as gr | |
| from PIL import Image, ImageOps | |
| from huggingface_hub import snapshot_download | |
| from pyramid_dit import PyramidDiTForVideoGeneration | |
| from diffusers.utils import export_to_video | |
| import spaces | |
| import uuid | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| # Constants | |
| MODEL_PATH = "pyramid-flow-model" | |
| MODEL_REPO = "rain1011/pyramid-flow-sd3" | |
| MODEL_VARIANT = "diffusion_transformer_768p" | |
| MODEL_DTYPE = "bf16" | |
| def center_crop(image, target_width, target_height): | |
| width, height = image.size | |
| aspect_ratio_target = target_width / target_height | |
| aspect_ratio_image = width / height | |
| if aspect_ratio_image > aspect_ratio_target: | |
| # Crop the width (left and right) | |
| new_width = int(height * aspect_ratio_target) | |
| left = (width - new_width) // 2 | |
| right = left + new_width | |
| top, bottom = 0, height | |
| else: | |
| # Crop the height (top and bottom) | |
| new_height = int(width / aspect_ratio_target) | |
| top = (height - new_height) // 2 | |
| bottom = top + new_height | |
| left, right = 0, width | |
| image = image.crop((left, top, right, bottom)) | |
| return image | |
| # Download and load the model | |
| def load_model(): | |
| if not os.path.exists(MODEL_PATH): | |
| snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model') | |
| model = PyramidDiTForVideoGeneration( | |
| MODEL_PATH, | |
| MODEL_DTYPE, | |
| model_variant=MODEL_VARIANT, | |
| ) | |
| model.vae.to("cuda") | |
| model.dit.to("cuda") | |
| model.text_encoder.to("cuda") | |
| model.vae.enable_tiling() | |
| return model | |
| # Global model variable | |
| model = load_model() | |
| # Text-to-video generation function | |
| def generate_video(image, prompt, duration, guidance_scale, video_guidance_scale): | |
| temp = int(duration * 0.8) # Convert seconds to temp value (assuming 24 FPS) | |
| torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 | |
| if(image): | |
| cropped_image = center_crop(image, 1280, 720) | |
| resized_image = cropped_image.resize((1280, 720)) | |
| with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
| frames = model.generate_i2v( | |
| prompt=prompt, | |
| input_image=resized_image, | |
| num_inference_steps=[10, 10, 10], | |
| temp=temp, | |
| guidance_scale=7.0, | |
| video_guidance_scale=video_guidance_scale, | |
| output_type="pil", | |
| save_memory=True, | |
| ) | |
| else: | |
| with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
| frames = model.generate( | |
| prompt=prompt, | |
| num_inference_steps=[20, 20, 20], | |
| video_num_inference_steps=[10, 10, 10], | |
| height=768, | |
| width=1280, | |
| temp=temp, | |
| guidance_scale=guidance_scale, | |
| video_guidance_scale=video_guidance_scale, | |
| output_type="pil", | |
| save_memory=True, | |
| ) | |
| output_path = f"{str(uuid.uuid4())}_output_video.mp4" | |
| export_to_video(frames, output_path, fps=8) | |
| return output_path | |
| # Image-to-video generation function | |
| #@spaces.GPU(duration=240) | |
| #def generate_video_from_image(image, prompt, duration, video_guidance_scale): | |
| # temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS) | |
| # torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 | |
| # | |
| # target_size = (1280, 720) | |
| # cropped_image = center_crop(image, 1280, 720) | |
| # resized_image = cropped_image.resize((1280, 720)) | |
| # | |
| # with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
| # frames = model.generate_i2v( | |
| # prompt=prompt, | |
| # input_image=resized_image, | |
| # num_inference_steps=[10, 10, 10], | |
| # temp=temp, | |
| # guidance_scale=7.0, | |
| # video_guidance_scale=video_guidance_scale, | |
| # output_type="pil", | |
| # save_memory=True, | |
| # ) | |
| output_path = "output_video_i2v.mp4" | |
| export_to_video(frames, output_path, fps=24) | |
| return output_path | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Pyramid Flow Video Generation Demo") | |
| #with gr.Tab("Text-to-Video"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Accordion("Image to Video (optional)", open=False): | |
| i2v_image = gr.Image(type="pil", label="Input Image") | |
| t2v_prompt = gr.Textbox(label="Prompt") | |
| with gr.Accordion("Advanced settings", open=False): | |
| t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") | |
| t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale") | |
| t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale") | |
| t2v_generate_btn = gr.Button("Generate Video") | |
| with gr.Column(): | |
| t2v_output = gr.Video(label="Generated Video") | |
| t2v_generate_btn.click( | |
| generate_video, | |
| inputs=[i2v_image, t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale], | |
| outputs=t2v_output | |
| ) | |
| #with gr.Tab("Image-to-Video"): | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # i2v_prompt = gr.Textbox(label="Prompt") | |
| # i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") | |
| # i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale") | |
| # i2v_generate_btn = gr.Button("Generate Video") | |
| # with gr.Column(): | |
| # i2v_output = gr.Video(label="Generated Video") | |
| #i2v_generate_btn.click( | |
| # generate_video_from_image, | |
| # inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale], | |
| # outputs=i2v_output | |
| #) | |
| demo.launch() |