Spaces:
Paused
Paused
# dataset_and_utils.py file taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py | |
import os | |
from typing import Dict, List, Optional, Tuple | |
import numpy as np | |
import pandas as pd | |
import PIL | |
import torch | |
import torch.utils.checkpoint | |
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | |
from PIL import Image | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
from torch.utils.data import Dataset | |
from transformers import AutoTokenizer, PretrainedConfig | |
def prepare_image( | |
pil_image: PIL.Image.Image, w: int = 512, h: int = 512 | |
) -> torch.Tensor: | |
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) | |
arr = np.array(pil_image.convert("RGB")) | |
arr = arr.astype(np.float32) / 127.5 - 1 | |
arr = np.transpose(arr, [2, 0, 1]) | |
image = torch.from_numpy(arr).unsqueeze(0) | |
return image | |
def prepare_mask( | |
pil_image: PIL.Image.Image, w: int = 512, h: int = 512 | |
) -> torch.Tensor: | |
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) | |
arr = np.array(pil_image.convert("L")) | |
arr = arr.astype(np.float32) / 255.0 | |
arr = np.expand_dims(arr, 0) | |
image = torch.from_numpy(arr).unsqueeze(0) | |
return image | |
class PreprocessedDataset(Dataset): | |
def __init__( | |
self, | |
csv_path: str, | |
tokenizer_1, | |
tokenizer_2, | |
vae_encoder, | |
text_encoder_1=None, | |
text_encoder_2=None, | |
do_cache: bool = False, | |
size: int = 512, | |
text_dropout: float = 0.0, | |
scale_vae_latents: bool = True, | |
substitute_caption_map: Dict[str, str] = {}, | |
): | |
super().__init__() | |
self.data = pd.read_csv(csv_path) | |
self.csv_path = csv_path | |
self.caption = self.data["caption"] | |
# make it lowercase | |
self.caption = self.caption.str.lower() | |
for key, value in substitute_caption_map.items(): | |
self.caption = self.caption.str.replace(key.lower(), value) | |
self.image_path = self.data["image_path"] | |
if "mask_path" not in self.data.columns: | |
self.mask_path = None | |
else: | |
self.mask_path = self.data["mask_path"] | |
if text_encoder_1 is None: | |
self.return_text_embeddings = False | |
else: | |
self.text_encoder_1 = text_encoder_1 | |
self.text_encoder_2 = text_encoder_2 | |
self.return_text_embeddings = True | |
assert ( | |
NotImplementedError | |
), "Preprocessing Text Encoder is not implemented yet" | |
self.tokenizer_1 = tokenizer_1 | |
self.tokenizer_2 = tokenizer_2 | |
self.vae_encoder = vae_encoder | |
self.scale_vae_latents = scale_vae_latents | |
self.text_dropout = text_dropout | |
self.size = size | |
if do_cache: | |
self.vae_latents = [] | |
self.tokens_tuple = [] | |
self.masks = [] | |
self.do_cache = True | |
print("Captions to train on: ") | |
for idx in range(len(self.data)): | |
token, vae_latent, mask = self._process(idx) | |
self.vae_latents.append(vae_latent) | |
self.tokens_tuple.append(token) | |
self.masks.append(mask) | |
del self.vae_encoder | |
else: | |
self.do_cache = False | |
def _process( | |
self, idx: int | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: | |
image_path = self.image_path[idx] | |
image_path = os.path.join(os.path.dirname(self.csv_path), image_path) | |
image = PIL.Image.open(image_path).convert("RGB") | |
image = prepare_image(image, self.size, self.size).to( | |
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device | |
) | |
caption = self.caption[idx] | |
print(caption) | |
# tokenizer_1 | |
ti1 = self.tokenizer_1( | |
caption, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
).input_ids | |
ti2 = self.tokenizer_2( | |
caption, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
).input_ids | |
vae_latent = self.vae_encoder.encode(image).latent_dist.sample() | |
if self.scale_vae_latents: | |
vae_latent = vae_latent * self.vae_encoder.config.scaling_factor | |
if self.mask_path is None: | |
mask = torch.ones_like( | |
vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device | |
) | |
else: | |
mask_path = self.mask_path[idx] | |
mask_path = os.path.join(os.path.dirname(self.csv_path), mask_path) | |
mask = PIL.Image.open(mask_path) | |
mask = prepare_mask(mask, self.size, self.size).to( | |
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device | |
) | |
mask = torch.nn.functional.interpolate( | |
mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest" | |
) | |
mask = mask.repeat(1, vae_latent.shape[1], 1, 1) | |
assert len(mask.shape) == 4 and len(vae_latent.shape) == 4 | |
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze() | |
def __len__(self) -> int: | |
return len(self.data) | |
def atidx( | |
self, idx: int | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: | |
if self.do_cache: | |
return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx] | |
else: | |
return self._process(idx) | |
def __getitem__( | |
self, idx: int | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: | |
token, vae_latent, mask = self.atidx(idx) | |
return token, vae_latent, mask | |
def import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "CLIPTextModelWithProjection": | |
from transformers import CLIPTextModelWithProjection | |
return CLIPTextModelWithProjection | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype): | |
tokenizer_one = AutoTokenizer.from_pretrained( | |
pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=revision, | |
use_fast=False, | |
) | |
tokenizer_two = AutoTokenizer.from_pretrained( | |
pretrained_model_name_or_path, | |
subfolder="tokenizer_2", | |
revision=revision, | |
use_fast=False, | |
) | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained( | |
pretrained_model_name_or_path, subfolder="scheduler" | |
) | |
# import correct text encoder classes | |
text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path, revision | |
) | |
text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path, revision, subfolder="text_encoder_2" | |
) | |
text_encoder_one = text_encoder_cls_one.from_pretrained( | |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision | |
) | |
text_encoder_two = text_encoder_cls_two.from_pretrained( | |
pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision | |
) | |
vae = AutoencoderKL.from_pretrained( | |
pretrained_model_name_or_path, subfolder="vae", revision=revision | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="unet", revision=revision | |
) | |
vae.requires_grad_(False) | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
unet.to(device, dtype=weight_dtype) | |
vae.to(device, dtype=torch.float32) | |
text_encoder_one.to(device, dtype=weight_dtype) | |
text_encoder_two.to(device, dtype=weight_dtype) | |
return ( | |
tokenizer_one, | |
tokenizer_two, | |
noise_scheduler, | |
text_encoder_one, | |
text_encoder_two, | |
vae, | |
unet, | |
) | |
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]: | |
""" | |
Returns: | |
a state dict containing just the attention processor parameters. | |
""" | |
attn_processors = unet.attn_processors | |
attn_processors_state_dict = {} | |
for attn_processor_key, attn_processor in attn_processors.items(): | |
for parameter_key, parameter in attn_processor.state_dict().items(): | |
attn_processors_state_dict[ | |
f"{attn_processor_key}.{parameter_key}" | |
] = parameter | |
return attn_processors_state_dict | |
class TokenEmbeddingsHandler: | |
def __init__(self, text_encoders, tokenizers): | |
self.text_encoders = text_encoders | |
self.tokenizers = tokenizers | |
self.train_ids: Optional[torch.Tensor] = None | |
self.inserting_toks: Optional[List[str]] = None | |
self.embeddings_settings = {} | |
def initialize_new_tokens(self, inserting_toks: List[str]): | |
idx = 0 | |
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders): | |
assert isinstance( | |
inserting_toks, list | |
), "inserting_toks should be a list of strings." | |
assert all( | |
isinstance(tok, str) for tok in inserting_toks | |
), "All elements in inserting_toks should be strings." | |
self.inserting_toks = inserting_toks | |
special_tokens_dict = {"additional_special_tokens": self.inserting_toks} | |
tokenizer.add_special_tokens(special_tokens_dict) | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) | |
# random initialization of new tokens | |
std_token_embedding = ( | |
text_encoder.text_model.embeddings.token_embedding.weight.data.std() | |
) | |
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}") | |
text_encoder.text_model.embeddings.token_embedding.weight.data[ | |
self.train_ids | |
] = ( | |
torch.randn( | |
len(self.train_ids), text_encoder.text_model.config.hidden_size | |
) | |
.to(device=self.device) | |
.to(dtype=self.dtype) | |
* std_token_embedding | |
) | |
self.embeddings_settings[ | |
f"original_embeddings_{idx}" | |
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() | |
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding | |
inu = torch.ones((len(tokenizer),), dtype=torch.bool) | |
inu[self.train_ids] = False | |
self.embeddings_settings[f"index_no_updates_{idx}"] = inu | |
print(self.embeddings_settings[f"index_no_updates_{idx}"].shape) | |
idx += 1 | |
def save_embeddings(self, file_path: str): | |
assert ( | |
self.train_ids is not None | |
), "Initialize new tokens before saving embeddings." | |
tensors = {} | |
for idx, text_encoder in enumerate(self.text_encoders): | |
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[ | |
0 | |
] == len(self.tokenizers[0]), "Tokenizers should be the same." | |
new_token_embeddings = ( | |
text_encoder.text_model.embeddings.token_embedding.weight.data[ | |
self.train_ids | |
] | |
) | |
tensors[f"text_encoders_{idx}"] = new_token_embeddings | |
save_file(tensors, file_path) | |
def dtype(self): | |
return self.text_encoders[0].dtype | |
def device(self): | |
return self.text_encoders[0].device | |
def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder): | |
# Assuming new tokens are of the format <s_i> | |
self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])] | |
special_tokens_dict = {"additional_special_tokens": self.inserting_toks} | |
tokenizer.add_special_tokens(special_tokens_dict) | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) | |
assert self.train_ids is not None, "New tokens could not be converted to IDs." | |
text_encoder.text_model.embeddings.token_embedding.weight.data[ | |
self.train_ids | |
] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype) | |
def retract_embeddings(self): | |
for idx, text_encoder in enumerate(self.text_encoders): | |
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"] | |
text_encoder.text_model.embeddings.token_embedding.weight.data[ | |
index_no_updates | |
] = ( | |
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates] | |
.to(device=text_encoder.device) | |
.to(dtype=text_encoder.dtype) | |
) | |
# for the parts that were updated, we need to normalize them | |
# to have the same std as before | |
std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"] | |
index_updates = ~index_no_updates | |
new_embeddings = ( | |
text_encoder.text_model.embeddings.token_embedding.weight.data[ | |
index_updates | |
] | |
) | |
off_ratio = std_token_embedding / new_embeddings.std() | |
new_embeddings = new_embeddings * (off_ratio**0.1) | |
text_encoder.text_model.embeddings.token_embedding.weight.data[ | |
index_updates | |
] = new_embeddings | |
def load_embeddings(self, file_path: str): | |
with safe_open(file_path, framework="pt", device=self.device.type) as f: | |
for idx in range(len(self.text_encoders)): | |
text_encoder = self.text_encoders[idx] | |
tokenizer = self.tokenizers[idx] | |
loaded_embeddings = f.get_tensor(f"text_encoders_{idx}") | |
self._load_embeddings(loaded_embeddings, tokenizer, text_encoder) |