Spaces:
Runtime error
Runtime error
import logging | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import torch | |
import torchaudio | |
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, | |
setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
log = logging.getLogger() | |
def main(): | |
setup_eval_logging() | |
parser = ArgumentParser() | |
parser.add_argument('--variant', | |
type=str, | |
default='large_44k_v2', | |
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2') | |
parser.add_argument('--video', type=Path, help='Path to the video file') | |
parser.add_argument('--prompt', type=str, help='Input prompt', default='') | |
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='') | |
parser.add_argument('--duration', type=float, default=8.0) | |
parser.add_argument('--cfg_strength', type=float, default=4.5) | |
parser.add_argument('--num_steps', type=int, default=25) | |
parser.add_argument('--mask_away_clip', action='store_true') | |
parser.add_argument('--output', type=Path, help='Output directory', default='./output') | |
parser.add_argument('--seed', type=int, help='Random seed', default=42) | |
parser.add_argument('--skip_video_composite', action='store_true') | |
parser.add_argument('--full_precision', action='store_true') | |
args = parser.parse_args() | |
if args.variant not in all_model_cfg: | |
raise ValueError(f'Unknown model variant: {args.variant}') | |
model: ModelConfig = all_model_cfg[args.variant] | |
model.download_if_needed() | |
seq_cfg = model.seq_cfg | |
if args.video: | |
video_path: Path = Path(args.video).expanduser() | |
else: | |
video_path = None | |
prompt: str = args.prompt | |
negative_prompt: str = args.negative_prompt | |
output_dir: str = args.output.expanduser() | |
seed: int = args.seed | |
num_steps: int = args.num_steps | |
duration: float = args.duration | |
cfg_strength: float = args.cfg_strength | |
skip_video_composite: bool = args.skip_video_composite | |
mask_away_clip: bool = args.mask_away_clip | |
device = 'cuda' | |
dtype = torch.float32 if args.full_precision else torch.bfloat16 | |
output_dir.mkdir(parents=True, exist_ok=True) | |
# load a pretrained model | |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded weights from {model.model_path}') | |
# misc setup | |
rng = torch.Generator(device=device) | |
rng.manual_seed(seed) | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, | |
synchformer_ckpt=model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model.mode, | |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
if video_path is not None: | |
log.info(f'Using video {video_path}') | |
video_info = load_video(video_path, duration) | |
clip_frames = video_info.clip_frames | |
sync_frames = video_info.sync_frames | |
duration = video_info.duration_sec | |
if mask_away_clip: | |
clip_frames = None | |
else: | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
else: | |
log.info('No video provided -- text-to-audio mode') | |
clip_frames = sync_frames = None | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
log.info(f'Prompt: {prompt}') | |
log.info(f'Negative prompt: {negative_prompt}') | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
if video_path is not None: | |
save_path = output_dir / f'{video_path.stem}.flac' | |
else: | |
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '') | |
save_path = output_dir / f'{safe_filename}.flac' | |
torchaudio.save(save_path, audio, seq_cfg.sampling_rate) | |
log.info(f'Audio saved to {save_path}') | |
if video_path is not None and not skip_video_composite: | |
video_save_path = output_dir / f'{video_path.stem}.mp4' | |
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
log.info(f'Video saved to {output_dir / video_save_path}') | |
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30)) | |
if __name__ == '__main__': | |
main() | |