import logging from argparse import ArgumentParser from pathlib import Path import torch import torchaudio from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, setup_eval_logging) from mmaudio.model.flow_matching import FlowMatching from mmaudio.model.networks import MMAudio, get_my_mmaudio from mmaudio.model.utils.features_utils import FeaturesUtils torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True log = logging.getLogger() @torch.inference_mode() def main(): setup_eval_logging() parser = ArgumentParser() parser.add_argument('--variant', type=str, default='large_44k_v2', help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2') parser.add_argument('--video', type=Path, help='Path to the video file') parser.add_argument('--prompt', type=str, help='Input prompt', default='') parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='') parser.add_argument('--duration', type=float, default=8.0) parser.add_argument('--cfg_strength', type=float, default=4.5) parser.add_argument('--num_steps', type=int, default=25) parser.add_argument('--mask_away_clip', action='store_true') parser.add_argument('--output', type=Path, help='Output directory', default='./output') parser.add_argument('--seed', type=int, help='Random seed', default=42) parser.add_argument('--skip_video_composite', action='store_true') parser.add_argument('--full_precision', action='store_true') args = parser.parse_args() if args.variant not in all_model_cfg: raise ValueError(f'Unknown model variant: {args.variant}') model: ModelConfig = all_model_cfg[args.variant] model.download_if_needed() seq_cfg = model.seq_cfg if args.video: video_path: Path = Path(args.video).expanduser() else: video_path = None prompt: str = args.prompt negative_prompt: str = args.negative_prompt output_dir: str = args.output.expanduser() seed: int = args.seed num_steps: int = args.num_steps duration: float = args.duration cfg_strength: float = args.cfg_strength skip_video_composite: bool = args.skip_video_composite mask_away_clip: bool = args.mask_away_clip device = 'cuda' dtype = torch.float32 if args.full_precision else torch.bfloat16 output_dir.mkdir(parents=True, exist_ok=True) # load a pretrained model net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) log.info(f'Loaded weights from {model.model_path}') # misc setup rng = torch.Generator(device=device) rng.manual_seed(seed) fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, synchformer_ckpt=model.synchformer_ckpt, enable_conditions=True, mode=model.mode, bigvgan_vocoder_ckpt=model.bigvgan_16k_path, need_vae_encoder=False) feature_utils = feature_utils.to(device, dtype).eval() if video_path is not None: log.info(f'Using video {video_path}') video_info = load_video(video_path, duration) clip_frames = video_info.clip_frames sync_frames = video_info.sync_frames duration = video_info.duration_sec if mask_away_clip: clip_frames = None else: clip_frames = clip_frames.unsqueeze(0) sync_frames = sync_frames.unsqueeze(0) else: log.info('No video provided -- text-to-audio mode') clip_frames = sync_frames = None seq_cfg.duration = duration net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) log.info(f'Prompt: {prompt}') log.info(f'Negative prompt: {negative_prompt}') audios = generate(clip_frames, sync_frames, [prompt], negative_text=[negative_prompt], feature_utils=feature_utils, net=net, fm=fm, rng=rng, cfg_strength=cfg_strength) audio = audios.float().cpu()[0] if video_path is not None: save_path = output_dir / f'{video_path.stem}.flac' else: safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '') save_path = output_dir / f'{safe_filename}.flac' torchaudio.save(save_path, audio, seq_cfg.sampling_rate) log.info(f'Audio saved to {save_path}') if video_path is not None and not skip_video_composite: video_save_path = output_dir / f'{video_path.stem}.mp4' make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) log.info(f'Video saved to {output_dir / video_save_path}') log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30)) if __name__ == '__main__': main()