|
model: |
|
target: sgm.models.diffusion.DiffusionEngine |
|
params: |
|
scale_factor: 0.18215 |
|
disable_first_stage_autocast: True |
|
ckpt_path: checkpoints/svd_xt_image_decoder.safetensors |
|
|
|
denoiser_config: |
|
target: sgm.modules.diffusionmodules.denoiser.Denoiser |
|
params: |
|
scaling_config: |
|
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise |
|
|
|
network_config: |
|
target: sgm.modules.diffusionmodules.video_model.VideoUNet |
|
params: |
|
adm_in_channels: 768 |
|
num_classes: sequential |
|
use_checkpoint: True |
|
in_channels: 8 |
|
out_channels: 4 |
|
model_channels: 320 |
|
attention_resolutions: [4, 2, 1] |
|
num_res_blocks: 2 |
|
channel_mult: [1, 2, 4, 4] |
|
num_head_channels: 64 |
|
use_linear_in_transformer: True |
|
transformer_depth: 1 |
|
context_dim: 1024 |
|
spatial_transformer_attn_type: softmax-xformers |
|
extra_ff_mix_layer: True |
|
use_spatial_context: True |
|
merge_strategy: learned_with_images |
|
video_kernel_size: [3, 1, 1] |
|
|
|
conditioner_config: |
|
target: sgm.modules.GeneralConditioner |
|
params: |
|
emb_models: |
|
- is_trainable: False |
|
input_key: cond_frames_without_noise |
|
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder |
|
params: |
|
n_cond_frames: 1 |
|
n_copies: 1 |
|
open_clip_embedding_config: |
|
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder |
|
params: |
|
freeze: True |
|
|
|
- input_key: fps_id |
|
is_trainable: False |
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
|
params: |
|
outdim: 256 |
|
|
|
- input_key: motion_bucket_id |
|
is_trainable: False |
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
|
params: |
|
outdim: 256 |
|
|
|
- input_key: cond_frames |
|
is_trainable: False |
|
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder |
|
params: |
|
disable_encoder_autocast: True |
|
n_cond_frames: 1 |
|
n_copies: 1 |
|
is_ae: True |
|
encoder_config: |
|
target: sgm.models.autoencoder.AutoencoderKLModeOnly |
|
params: |
|
embed_dim: 4 |
|
monitor: val/rec_loss |
|
ddconfig: |
|
attn_type: vanilla-xformers |
|
double_z: True |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: [1, 2, 4, 4] |
|
num_res_blocks: 2 |
|
attn_resolutions: [] |
|
dropout: 0.0 |
|
lossconfig: |
|
target: torch.nn.Identity |
|
|
|
- input_key: cond_aug |
|
is_trainable: False |
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
|
params: |
|
outdim: 256 |
|
|
|
first_stage_config: |
|
target: sgm.models.autoencoder.AutoencoderKL |
|
params: |
|
embed_dim: 4 |
|
monitor: val/rec_loss |
|
ddconfig: |
|
attn_type: vanilla-xformers |
|
double_z: True |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: [1, 2, 4, 4] |
|
num_res_blocks: 2 |
|
attn_resolutions: [] |
|
dropout: 0.0 |
|
lossconfig: |
|
target: torch.nn.Identity |
|
|
|
sampler_config: |
|
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler |
|
params: |
|
discretization_config: |
|
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization |
|
params: |
|
sigma_max: 700.0 |
|
|
|
guider_config: |
|
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider |
|
params: |
|
max_scale: 3.0 |
|
min_scale: 1.5 |