Spaces:
Running
on
A10G
Running
on
A10G
# MultiBand Diffusion | |
AudioCraft provides the code and models for MultiBand Diffusion, [From Discrete Tokens to High Fidelity Audio using MultiBand Diffusion][arxiv]. | |
MultiBand diffusion is a collection of 4 models that can decode tokens from | |
<a href="https://github.com/facebookresearch/encodec">EnCodec tokenizer</a> into waveform audio. You can listen to some examples on the <a href="https://ai.honu.io/papers/mbd/">sample page</a>. | |
<a target="_blank" href="https://colab.research.google.com/drive/1JlTOjB-G0A2Hz3h8PK63vLZk4xdCI5QB?usp=sharing"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> | |
</a> | |
<br> | |
## Installation | |
Please follow the AudioCraft installation instructions from the [README](../README.md). | |
## Usage | |
We offer a number of way to use MultiBand Diffusion: | |
1. The MusicGen demo includes a toggle to try diffusion decoder. You can use the demo locally by running [`python -m demos.musicgen_app --share`](../demos/musicgen_app.py), or through the [MusicGen Colab](https://colab.research.google.com/drive/1JlTOjB-G0A2Hz3h8PK63vLZk4xdCI5QB?usp=sharing). | |
2. You can play with MusicGen by running the jupyter notebook at [`demos/musicgen_demo.ipynb`](../demos/musicgen_demo.ipynb) locally (if you have a GPU). | |
## API | |
We provide a simple API and pre-trained models for MusicGen and for EnCodec at 24 khz for 3 bitrates (1.5 kbps, 3 kbps and 6 kbps). | |
See after a quick example for using MultiBandDiffusion with the MusicGen API: | |
```python | |
import torchaudio | |
from audiocraft.models import MusicGen, MultiBandDiffusion | |
from audiocraft.data.audio import audio_write | |
model = MusicGen.get_pretrained('facebook/musicgen-melody') | |
mbd = MultiBandDiffusion.get_mbd_musicgen() | |
model.set_generation_params(duration=8) # generate 8 seconds. | |
wav, tokens = model.generate_unconditional(4, return_tokens=True) # generates 4 unconditional audio samples and keep the tokens for MBD generation | |
descriptions = ['happy rock', 'energetic EDM', 'sad jazz'] | |
wav_diffusion = mbd.tokens_to_wav(tokens) | |
wav, tokens = model.generate(descriptions, return_tokens=True) # generates 3 samples and keep the tokens. | |
wav_diffusion = mbd.tokens_to_wav(tokens) | |
melody, sr = torchaudio.load('./assets/bach.mp3') | |
# Generates using the melody from the given audio and the provided descriptions, returns audio and audio tokens. | |
wav, tokens = model.generate_with_chroma(descriptions, melody[None].expand(3, -1, -1), sr, return_tokens=True) | |
wav_diffusion = mbd.tokens_to_wav(tokens) | |
for idx, one_wav in enumerate(wav): | |
# Will save under {idx}.wav and {idx}_diffusion.wav, with loudness normalization at -14 db LUFS for comparing the methods. | |
audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True) | |
audio_write(f'{idx}_diffusion', wav_diffusion[idx].cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True) | |
``` | |
For the compression task (and to compare with [EnCodec](https://github.com/facebookresearch/encodec)): | |
```python | |
import torch | |
from audiocraft.models import MultiBandDiffusion | |
from encodec import EncodecModel | |
from audiocraft.data.audio import audio_read, audio_write | |
bandwidth = 3.0 # 1.5, 3.0, 6.0 | |
mbd = MultiBandDiffusion.get_mbd_24khz(bw=bandwidth) | |
encodec = EncodecModel.encodec_model_24khz() | |
somepath = '' | |
wav, sr = audio_read(somepath) | |
with torch.no_grad(): | |
compressed_encodec = encodec(wav) | |
compressed_diffusion = mbd.regenerate(wav, sample_rate=sr) | |
audio_write('sample_encodec', compressed_encodec.squeeze(0).cpu(), mbd.sample_rate, strategy="loudness", loudness_compressor=True) | |
audio_write('sample_diffusion', compressed_diffusion.squeeze(0).cpu(), mbd.sample_rate, strategy="loudness", loudness_compressor=True) | |
``` | |
## Training | |
The [DiffusionSolver](../audiocraft/solvers/diffusion.py) implements our diffusion training pipeline. | |
It generates waveform audio conditioned on the embeddings extracted from a pre-trained EnCodec model | |
(see [EnCodec documentation](./ENCODEC.md) for more details on how to train such model). | |
Note that **we do NOT provide any of the datasets** used for training our diffusion models. | |
We provide a dummy dataset containing just a few examples for illustrative purposes. | |
### Example configurations and grids | |
One can train diffusion models as described in the paper by using this [dora grid](../audiocraft/grids/diffusion/4_bands_base_32khz.py). | |
```shell | |
# 4 bands MBD trainning | |
dora grid diffusion.4_bands_base_32khz | |
``` | |
### Learn more | |
Learn more about AudioCraft training pipelines in the [dedicated section](./TRAINING.md). | |
## Citation | |
``` | |
@article{sanroman2023fromdi, | |
title={From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion}, | |
author={San Roman, Robin and Adi, Yossi and Deleforge, Antoine and Serizel, Romain and Synnaeve, Gabriel and Défossez, Alexandre}, | |
journal={arXiv preprint arXiv:}, | |
year={2023} | |
} | |
``` | |
## License | |
See license information in the [README](../README.md). | |
[arxiv]: https://arxiv.org/abs/2308.02560 | |
[mbd_samples]: https://ai.honu.io/papers/mbd/ | |