Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from collections import defaultdict | |
from copy import deepcopy | |
from dataclasses import dataclass, field | |
from itertools import chain | |
import logging | |
import random | |
import re | |
import typing as tp | |
import warnings | |
from einops import rearrange | |
from num2words import num2words | |
import spacy | |
from transformers import T5EncoderModel, T5Tokenizer # type: ignore | |
import torchaudio | |
import torch | |
from torch import nn | |
from torch import Tensor | |
import torch.nn.functional as F | |
from torch.nn.utils.rnn import pad_sequence | |
from .streaming import StreamingModule | |
from .transformer import create_sin_embedding | |
from ..data.audio_dataset import SegmentInfo | |
from ..utils.autocast import TorchAutocast | |
from ..utils.utils import hash_trick, length_to_mask, collate | |
logger = logging.getLogger(__name__) | |
TextCondition = tp.Optional[str] # a text condition can be a string or None (if doesn't exist) | |
ConditionType = tp.Tuple[Tensor, Tensor] # condition, mask | |
class WavCondition(tp.NamedTuple): | |
wav: Tensor | |
length: Tensor | |
path: tp.List[tp.Optional[str]] = [] | |
def nullify_condition(condition: ConditionType, dim: int = 1): | |
"""This function transforms an input condition to a null condition. | |
The way it is done by converting it to a single zero vector similarly | |
to how it is done inside WhiteSpaceTokenizer and NoopTokenizer. | |
Args: | |
condition (ConditionType): a tuple of condition and mask (tp.Tuple[Tensor, Tensor]) | |
dim (int): the dimension that will be truncated (should be the time dimension) | |
WARNING!: dim should not be the batch dimension! | |
Returns: | |
ConditionType: a tuple of null condition and mask | |
""" | |
assert dim != 0, "dim cannot be the batch dimension!" | |
assert type(condition) == tuple and \ | |
type(condition[0]) == Tensor and \ | |
type(condition[1]) == Tensor, "'nullify_condition' got an unexpected input type!" | |
cond, mask = condition | |
B = cond.shape[0] | |
last_dim = cond.dim() - 1 | |
out = cond.transpose(dim, last_dim) | |
out = 0. * out[..., :1] | |
out = out.transpose(dim, last_dim) | |
mask = torch.zeros((B, 1), device=out.device).int() | |
assert cond.dim() == out.dim() | |
return out, mask | |
def nullify_wav(wav: Tensor) -> WavCondition: | |
"""Create a nullified WavCondition from a wav tensor with appropriate shape. | |
Args: | |
wav (Tensor): tensor of shape [B, T] | |
Returns: | |
WavCondition: wav condition with nullified wav. | |
""" | |
null_wav, _ = nullify_condition((wav, torch.zeros_like(wav)), dim=wav.dim() - 1) | |
return WavCondition( | |
wav=null_wav, | |
length=torch.tensor([0] * wav.shape[0], device=wav.device), | |
path=['null_wav'] * wav.shape[0] | |
) | |
class ConditioningAttributes: | |
text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict) | |
wav: tp.Dict[str, WavCondition] = field(default_factory=dict) | |
def __getitem__(self, item): | |
return getattr(self, item) | |
def text_attributes(self): | |
return self.text.keys() | |
def wav_attributes(self): | |
return self.wav.keys() | |
def attributes(self): | |
return {"text": self.text_attributes, "wav": self.wav_attributes} | |
def to_flat_dict(self): | |
return { | |
**{f"text.{k}": v for k, v in self.text.items()}, | |
**{f"wav.{k}": v for k, v in self.wav.items()}, | |
} | |
def from_flat_dict(cls, x): | |
out = cls() | |
for k, v in x.items(): | |
kind, att = k.split(".") | |
out[kind][att] = v | |
return out | |
class SegmentWithAttributes(SegmentInfo): | |
"""Base class for all dataclasses that are used for conditioning. | |
All child classes should implement `to_condition_attributes` that converts | |
the existing attributes to a dataclass of type ConditioningAttributes. | |
""" | |
def to_condition_attributes(self) -> ConditioningAttributes: | |
raise NotImplementedError() | |
class Tokenizer: | |
"""Base class for all tokenizers | |
(in case we want to introduce more advances tokenizers in the future). | |
""" | |
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[Tensor, Tensor]: | |
raise NotImplementedError() | |
class WhiteSpaceTokenizer(Tokenizer): | |
"""This tokenizer should be used for natural language descriptions. | |
For example: | |
["he didn't, know he's going home.", 'shorter sentence'] => | |
[[78, 62, 31, 4, 78, 25, 19, 34], | |
[59, 77, 0, 0, 0, 0, 0, 0]] | |
""" | |
PUNCTUATIONS = "?:!.,;" | |
def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm", | |
lemma: bool = True, stopwords: bool = True) -> None: | |
self.n_bins = n_bins | |
self.pad_idx = pad_idx | |
self.lemma = lemma | |
self.stopwords = stopwords | |
try: | |
self.nlp = spacy.load(language) | |
except IOError: | |
spacy.cli.download(language) # type: ignore | |
self.nlp = spacy.load(language) | |
def __call__( | |
self, | |
texts: tp.List[tp.Optional[str]], | |
return_text: bool = False | |
) -> tp.Tuple[Tensor, Tensor]: | |
"""Take a list of strings and convert them to a tensor of indices. | |
Args: | |
texts (tp.List[str]): List of strings. | |
return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False. | |
Returns: | |
tp.Tuple[Tensor, Tensor]: | |
- Indices of words in the LUT. | |
- And a mask indicating where the padding tokens are | |
""" | |
output, lengths = [], [] | |
texts = deepcopy(texts) | |
for i, text in enumerate(texts): | |
# if current sample doesn't have a certain attribute, replace with pad token | |
if text is None: | |
output.append(Tensor([self.pad_idx])) | |
lengths.append(0) | |
continue | |
# convert numbers to words | |
text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text) # type: ignore | |
# normalize text | |
text = self.nlp(text) # type: ignore | |
# remove stopwords | |
if self.stopwords: | |
text = [w for w in text if not w.is_stop] # type: ignore | |
# remove punctuations | |
text = [w for w in text if w.text not in self.PUNCTUATIONS] # type: ignore | |
# lemmatize if needed | |
text = [getattr(t, "lemma_" if self.lemma else "text") for t in text] # type: ignore | |
texts[i] = " ".join(text) | |
lengths.append(len(text)) | |
# convert to tensor | |
tokens = Tensor([hash_trick(w, self.n_bins) for w in text]) | |
output.append(tokens) | |
mask = length_to_mask(torch.IntTensor(lengths)).int() | |
padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t() | |
if return_text: | |
return padded_output, mask, texts # type: ignore | |
return padded_output, mask | |
class NoopTokenizer(Tokenizer): | |
"""This tokenizer should be used for global conditioners such as: artist, genre, key, etc. | |
The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split | |
strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will | |
split it to ["Jeff", "Buckley"] and return an index per word. | |
For example: | |
["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101] | |
["Metal", "Rock", "Classical"] => [0, 223, 51] | |
""" | |
def __init__(self, n_bins: int, pad_idx: int = 0): | |
self.n_bins = n_bins | |
self.pad_idx = pad_idx | |
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[Tensor, Tensor]: | |
output, lengths = [], [] | |
for text in texts: | |
# if current sample doesn't have a certain attribute, replace with pad token | |
if text is None: | |
output.append(self.pad_idx) | |
lengths.append(0) | |
else: | |
output.append(hash_trick(text, self.n_bins)) | |
lengths.append(1) | |
tokens = torch.LongTensor(output).unsqueeze(1) | |
mask = length_to_mask(torch.IntTensor(lengths)).int() | |
return tokens, mask | |
class BaseConditioner(nn.Module): | |
"""Base model for all conditioner modules. We allow the output dim to be different | |
than the hidden dim for two reasons: 1) keep our LUTs small when the vocab is large; | |
2) make all condition dims consistent. | |
Args: | |
dim (int): Hidden dim of the model (text-encoder/LUT). | |
output_dim (int): Output dim of the conditioner. | |
""" | |
def __init__(self, dim, output_dim): | |
super().__init__() | |
self.dim = dim | |
self.output_dim = output_dim | |
self.output_proj = nn.Linear(dim, output_dim) | |
def tokenize(self, *args, **kwargs) -> tp.Any: | |
"""Should be any part of the processing that will lead to a synchronization | |
point, e.g. BPE tokenization with transfer to the GPU. | |
The returned value will be saved and return later when calling forward(). | |
""" | |
raise NotImplementedError() | |
def forward(self, inputs: tp.Any) -> ConditionType: | |
"""Gets input that should be used as conditioning (e.g, genre, description or a waveform). | |
Outputs a ConditionType, after the input data was embedded as a dense vector. | |
Returns: | |
ConditionType: | |
- A tensor of size [B, T, D] where B is the batch size, T is the length of the | |
output embedding and D is the dimension of the embedding. | |
- And a mask indicating where the padding tokens. | |
""" | |
raise NotImplementedError() | |
class TextConditioner(BaseConditioner): | |
... | |
class LUTConditioner(TextConditioner): | |
"""Lookup table TextConditioner. | |
Args: | |
n_bins (int): Number of bins. | |
dim (int): Hidden dim of the model (text-encoder/LUT). | |
output_dim (int): Output dim of the conditioner. | |
tokenizer (str): Name of the tokenizer. | |
pad_idx (int, optional): Index for padding token. Defaults to 0. | |
""" | |
def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0): | |
super().__init__(dim, output_dim) | |
self.embed = nn.Embedding(n_bins, dim) | |
self.tokenizer: Tokenizer | |
if tokenizer == "whitespace": | |
self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx) | |
elif tokenizer == "noop": | |
self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx) | |
else: | |
raise ValueError(f"unrecognized tokenizer `{tokenizer}`.") | |
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
device = self.embed.weight.device | |
tokens, mask = self.tokenizer(x) | |
tokens, mask = tokens.to(device), mask.to(device) | |
return tokens, mask | |
def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType: | |
tokens, mask = inputs | |
embeds = self.embed(tokens) | |
embeds = self.output_proj(embeds) | |
embeds = (embeds * mask.unsqueeze(-1)) | |
return embeds, mask | |
class T5Conditioner(TextConditioner): | |
"""T5-based TextConditioner. | |
Args: | |
name (str): Name of the T5 model. | |
output_dim (int): Output dim of the conditioner. | |
finetune (bool): Whether to fine-tune T5 at train time. | |
device (str): Device for T5 Conditioner. | |
autocast_dtype (tp.Optional[str], optional): Autocast dtype. | |
word_dropout (float, optional): Word dropout probability. | |
normalize_text (bool, optional): Whether to apply text normalization. | |
""" | |
MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", | |
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", | |
"google/flan-t5-xl", "google/flan-t5-xxl"] | |
MODELS_DIMS = { | |
"t5-small": 512, | |
"t5-base": 768, | |
"t5-large": 1024, | |
"t5-3b": 1024, | |
"t5-11b": 1024, | |
"google/flan-t5-small": 512, | |
"google/flan-t5-base": 768, | |
"google/flan-t5-large": 1024, | |
"google/flan-t5-3b": 1024, | |
"google/flan-t5-11b": 1024, | |
} | |
def __init__(self, name: str, output_dim: int, finetune: bool, device: str, | |
autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0., | |
normalize_text: bool = False): | |
assert name in self.MODELS, f"unrecognized t5 model name (should in {self.MODELS})" | |
super().__init__(self.MODELS_DIMS[name], output_dim) | |
self.device = device | |
self.name = name | |
self.finetune = finetune | |
self.word_dropout = word_dropout | |
if autocast_dtype is None or self.device == 'cpu': | |
self.autocast = TorchAutocast(enabled=False) | |
if self.device != 'cpu': | |
logger.warning("T5 has no autocast, this might lead to NaN") | |
else: | |
dtype = getattr(torch, autocast_dtype) | |
assert isinstance(dtype, torch.dtype) | |
logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}") | |
self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype) | |
# Let's disable logging temporarily because T5 will vomit some errors otherwise. | |
# thanks https://gist.github.com/simon-weber/7853144 | |
previous_level = logging.root.manager.disable | |
logging.disable(logging.ERROR) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
try: | |
self.t5_tokenizer = T5Tokenizer.from_pretrained(name) | |
t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune) | |
finally: | |
logging.disable(previous_level) | |
if finetune: | |
self.t5 = t5 | |
else: | |
# this makes sure that the t5 models is not part | |
# of the saved checkpoint | |
self.__dict__["t5"] = t5.to(device) | |
self.normalize_text = normalize_text | |
if normalize_text: | |
self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True) | |
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: | |
# if current sample doesn't have a certain attribute, replace with empty string | |
entries: tp.List[str] = [xi if xi is not None else "" for xi in x] | |
if self.normalize_text: | |
_, _, entries = self.text_normalizer(entries, return_text=True) | |
if self.word_dropout > 0. and self.training: | |
new_entries = [] | |
for entry in entries: | |
words = [word for word in entry.split(" ") if random.random() >= self.word_dropout] | |
new_entries.append(" ".join(words)) | |
entries = new_entries | |
empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""]) | |
inputs = self.t5_tokenizer(entries, return_tensors="pt", padding=True).to(self.device) | |
mask = inputs["attention_mask"] | |
mask[empty_idx, :] = 0 # zero-out index where the input is non-existant | |
return inputs | |
def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType: | |
mask = inputs["attention_mask"] | |
with torch.set_grad_enabled(self.finetune), self.autocast: | |
embeds = self.t5(**inputs).last_hidden_state | |
embeds = self.output_proj(embeds.to(self.output_proj.weight)) | |
embeds = (embeds * mask.unsqueeze(-1)) | |
return embeds, mask | |
class WaveformConditioner(BaseConditioner): | |
"""Base class for all conditioners that take a waveform as input. | |
Classes that inherit must implement `_get_wav_embedding` that outputs | |
a continuous tensor, and `_downsampling_factor` that returns the down-sampling | |
factor of the embedding model. | |
Args: | |
dim (int): The internal representation dimension. | |
output_dim (int): Output dimension. | |
device (tp.Union[torch.device, str]): Device. | |
""" | |
def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]): | |
super().__init__(dim, output_dim) | |
self.device = device | |
def tokenize(self, wav_length: WavCondition) -> WavCondition: | |
wav, length, path = wav_length | |
assert length is not None | |
return WavCondition(wav.to(self.device), length.to(self.device), path) | |
def _get_wav_embedding(self, wav: Tensor) -> Tensor: | |
"""Gets as input a wav and returns a dense vector of conditions.""" | |
raise NotImplementedError() | |
def _downsampling_factor(self): | |
"""Returns the downsampling factor of the embedding model.""" | |
raise NotImplementedError() | |
def forward(self, inputs: WavCondition) -> ConditionType: | |
""" | |
Args: | |
input (WavCondition): Tuple of (waveform, lengths). | |
Returns: | |
ConditionType: Dense vector representing the conditioning along with its' mask. | |
""" | |
wav, lengths, path = inputs | |
with torch.no_grad(): | |
embeds = self._get_wav_embedding(wav) | |
embeds = embeds.to(self.output_proj.weight) | |
embeds = self.output_proj(embeds) | |
if lengths is not None: | |
lengths = lengths / self._downsampling_factor() | |
mask = length_to_mask(lengths, max_len=embeds.shape[1]).int() # type: ignore | |
else: | |
mask = torch.ones_like(embeds) | |
embeds = (embeds * mask.unsqueeze(2).to(self.device)) | |
return embeds, mask | |
class ChromaStemConditioner(WaveformConditioner): | |
"""Chroma conditioner that uses DEMUCS to first filter out drums and bass. The is followed by | |
the insight the drums and bass often dominate the chroma, leading to the chroma not containing the | |
information about melody. | |
Args: | |
output_dim (int): Output dimension for the conditioner. | |
sample_rate (int): Sample rate for the chroma extractor. | |
n_chroma (int): Number of chroma for the chroma extractor. | |
radix2_exp (int): Radix2 exponent for the chroma extractor. | |
duration (float): Duration used during training. This is later used for correct padding | |
in case we are using chroma as prefix. | |
match_len_on_eval (bool, optional): If True then all chromas are padded to the training | |
duration. Defaults to False. | |
eval_wavs (str, optional): Path to a json egg with waveform, this waveforms are used as | |
conditions during eval (for cases where we don't want to leak test conditions like MusicCaps). | |
Defaults to None. | |
n_eval_wavs (int, optional): Limits the number of waveforms used for conditioning. Defaults to 0. | |
device (tp.Union[torch.device, str], optional): Device for the conditioner. | |
**kwargs: Additional parameters for the chroma extractor. | |
""" | |
def __init__(self, output_dim: int, sample_rate: int, n_chroma: int, radix2_exp: int, | |
duration: float, match_len_on_eval: bool = False, eval_wavs: tp.Optional[str] = None, | |
n_eval_wavs: int = 0, device: tp.Union[torch.device, str] = "cpu", **kwargs): | |
from demucs import pretrained | |
super().__init__(dim=n_chroma, output_dim=output_dim, device=device) | |
self.autocast = TorchAutocast(enabled=device != "cpu", device_type=self.device, dtype=torch.float32) | |
self.sample_rate = sample_rate | |
self.match_len_on_eval = match_len_on_eval | |
self.duration = duration | |
self.__dict__["demucs"] = pretrained.get_model('htdemucs').to(device) | |
self.stem2idx = {'drums': 0, 'bass': 1, 'other': 2, 'vocal': 3} | |
self.stem_idx = torch.LongTensor([self.stem2idx['vocal'], self.stem2idx['other']]).to(device) | |
self.chroma = ChromaExtractor(sample_rate=sample_rate, n_chroma=n_chroma, radix2_exp=radix2_exp, | |
device=device, **kwargs) | |
self.chroma_len = self._get_chroma_len() | |
def _downsampling_factor(self): | |
return self.chroma.winhop | |
def _get_chroma_len(self): | |
"""Get length of chroma during training""" | |
dummy_wav = torch.zeros((1, self.sample_rate * self.duration), device=self.device) | |
dummy_chr = self.chroma(dummy_wav) | |
return dummy_chr.shape[1] | |
def _get_filtered_wav(self, wav): | |
from demucs.apply import apply_model | |
from demucs.audio import convert_audio | |
with self.autocast: | |
wav = convert_audio(wav, self.sample_rate, self.demucs.samplerate, self.demucs.audio_channels) | |
stems = apply_model(self.demucs, wav, device=self.device) | |
stems = stems[:, self.stem_idx] # extract stem | |
stems = stems.sum(1) # merge extracted stems | |
stems = stems.mean(1, keepdim=True) # mono | |
stems = convert_audio(stems, self.demucs.samplerate, self.sample_rate, 1) | |
return stems | |
def _get_wav_embedding(self, wav): | |
# avoid 0-size tensors when we are working with null conds | |
if wav.shape[-1] == 1: | |
return self.chroma(wav) | |
stems = self._get_filtered_wav(wav) | |
chroma = self.chroma(stems) | |
if self.match_len_on_eval: | |
b, t, c = chroma.shape | |
if t > self.chroma_len: | |
chroma = chroma[:, :self.chroma_len] | |
logger.debug(f'chroma was truncated! ({t} -> {chroma.shape[1]})') | |
elif t < self.chroma_len: | |
chroma = F.pad(chroma, (0, 0, 0, self.chroma_len - t)) | |
logger.debug(f'chroma was zero-padded! ({t} -> {chroma.shape[1]})') | |
return chroma | |
class ChromaExtractor(nn.Module): | |
"""Chroma extraction class, handles chroma extraction and quantization. | |
Args: | |
sample_rate (int): Sample rate. | |
n_chroma (int): Number of chroma to consider. | |
radix2_exp (int): Radix2 exponent. | |
nfft (tp.Optional[int], optional): Number of FFT. | |
winlen (tp.Optional[int], optional): Window length. | |
winhop (tp.Optional[int], optional): Window hop size. | |
argmax (bool, optional): Whether to use argmax. Defaults to False. | |
norm (float, optional): Norm for chroma normalization. Defaults to inf. | |
device (tp.Union[torch.device, str], optional): Device to use. Defaults to cpu. | |
""" | |
def __init__(self, sample_rate: int, n_chroma: int = 12, radix2_exp: int = 12, | |
nfft: tp.Optional[int] = None, winlen: tp.Optional[int] = None, winhop: tp.Optional[int] = None, | |
argmax: bool = False, norm: float = torch.inf, device: tp.Union[torch.device, str] = "cpu"): | |
super().__init__() | |
from librosa import filters | |
self.device = device | |
self.autocast = TorchAutocast(enabled=device != "cpu", device_type=self.device, dtype=torch.float32) | |
self.winlen = winlen or 2 ** radix2_exp | |
self.nfft = nfft or self.winlen | |
self.winhop = winhop or (self.winlen // 4) | |
self.sr = sample_rate | |
self.n_chroma = n_chroma | |
self.norm = norm | |
self.argmax = argmax | |
self.window = torch.hann_window(self.winlen).to(device) | |
self.fbanks = torch.from_numpy(filters.chroma(sr=sample_rate, n_fft=self.nfft, tuning=0, | |
n_chroma=self.n_chroma)).to(device) | |
self.spec = torchaudio.transforms.Spectrogram(n_fft=self.nfft, win_length=self.winlen, | |
hop_length=self.winhop, power=2, center=True, | |
pad=0, normalized=True).to(device) | |
def forward(self, wav): | |
with self.autocast: | |
T = wav.shape[-1] | |
# in case we are getting a wav that was dropped out (nullified) | |
# make sure wav length is no less that nfft | |
if T < self.nfft: | |
pad = self.nfft - T | |
r = 0 if pad % 2 == 0 else 1 | |
wav = F.pad(wav, (pad // 2, pad // 2 + r), 'constant', 0) | |
assert wav.shape[-1] == self.nfft, f'expected len {self.nfft} but got {wav.shape[-1]}' | |
spec = self.spec(wav).squeeze(1) | |
raw_chroma = torch.einsum("cf,...ft->...ct", self.fbanks, spec) | |
norm_chroma = torch.nn.functional.normalize(raw_chroma, p=self.norm, dim=-2, eps=1e-6) | |
norm_chroma = rearrange(norm_chroma, "b d t -> b t d") | |
if self.argmax: | |
idx = norm_chroma.argmax(-1, keepdims=True) | |
norm_chroma[:] = 0 | |
norm_chroma.scatter_(dim=-1, index=idx, value=1) | |
return norm_chroma | |
def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str): | |
"""Utility function for nullifying an attribute inside an ConditioningAttributes object. | |
If the condition is of type "wav", then nullify it using "nullify_condition". | |
If the condition is of any other type, set its' value to None. | |
Works in-place. | |
""" | |
if condition_type not in ["text", "wav"]: | |
raise ValueError( | |
"dropout_condition got an unexpected condition type!" | |
f" expected 'wav' or 'text' but got '{condition_type}'" | |
) | |
if condition not in getattr(sample, condition_type): | |
raise ValueError( | |
"dropout_condition received an unexpected condition!" | |
f" expected wav={sample.wav.keys()} and text={sample.text.keys()}" | |
f"but got '{condition}' of type '{condition_type}'!" | |
) | |
if condition_type == "wav": | |
wav, length, path = sample.wav[condition] | |
sample.wav[condition] = nullify_wav(wav) | |
else: | |
sample.text[condition] = None | |
return sample | |
class DropoutModule(nn.Module): | |
"""Base class for all dropout modules.""" | |
def __init__(self, seed: int = 1234): | |
super().__init__() | |
self.rng = torch.Generator() | |
self.rng.manual_seed(seed) | |
class AttributeDropout(DropoutModule): | |
"""Applies dropout with a given probability per attribute. This is different from the behavior of | |
ClassifierFreeGuidanceDropout as this allows for attributes to be dropped out separately. For example, | |
"artist" can be dropped while "genre" remains. This is in contrast to ClassifierFreeGuidanceDropout | |
where if "artist" is dropped "genre" must also be dropped. | |
Args: | |
p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example: | |
... | |
"genre": 0.1, | |
"artist": 0.5, | |
"wav": 0.25, | |
... | |
active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False. | |
seed (int, optional): Random seed. | |
""" | |
def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234): | |
super().__init__(seed=seed) | |
self.active_on_eval = active_on_eval | |
# construct dict that return the values from p otherwise 0 | |
self.p = {} | |
for condition_type, probs in p.items(): | |
self.p[condition_type] = defaultdict(lambda: 0, probs) | |
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: | |
""" | |
Args: | |
samples (tp.List[ConditioningAttributes]): List of conditions. | |
Returns: | |
tp.List[ConditioningAttributes]: List of conditions after certain attributes were set to None. | |
""" | |
if not self.training and not self.active_on_eval: | |
return samples | |
samples = deepcopy(samples) | |
for condition_type, ps in self.p.items(): # for condition types [text, wav] | |
for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre]) | |
if torch.rand(1, generator=self.rng).item() < p: | |
for sample in samples: | |
dropout_condition(sample, condition_type, condition) | |
return samples | |
def __repr__(self): | |
return f"AttributeDropout({dict(self.p)})" | |
class ClassifierFreeGuidanceDropout(DropoutModule): | |
"""Applies Classifier Free Guidance dropout, meaning all attributes | |
are dropped with the same probability. | |
Args: | |
p (float): Probability to apply condition dropout during training. | |
seed (int): Random seed. | |
""" | |
def __init__(self, p: float, seed: int = 1234): | |
super().__init__(seed=seed) | |
self.p = p | |
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: | |
""" | |
Args: | |
samples (tp.List[ConditioningAttributes]): List of conditions. | |
Returns: | |
tp.List[ConditioningAttributes]: List of conditions after all attributes were set to None. | |
""" | |
if not self.training: | |
return samples | |
# decide on which attributes to drop in a batched fashion | |
drop = torch.rand(1, generator=self.rng).item() < self.p | |
if not drop: | |
return samples | |
# nullify conditions of all attributes | |
samples = deepcopy(samples) | |
for condition_type in ["wav", "text"]: | |
for sample in samples: | |
for condition in sample.attributes[condition_type]: | |
dropout_condition(sample, condition_type, condition) | |
return samples | |
def __repr__(self): | |
return f"ClassifierFreeGuidanceDropout(p={self.p})" | |
class ConditioningProvider(nn.Module): | |
"""Main class to provide conditions given all the supported conditioners. | |
Args: | |
conditioners (dict): Dictionary of conditioners. | |
merge_text_conditions_p (float, optional): Probability to merge all text sources | |
into a single text condition. Defaults to 0. | |
drop_desc_p (float, optional): Probability to drop the original description | |
when merging all text sources into a single text condition. Defaults to 0. | |
device (tp.Union[torch.device, str], optional): Device for conditioners and output condition types. | |
""" | |
def __init__( | |
self, | |
conditioners: tp.Dict[str, BaseConditioner], | |
merge_text_conditions_p: float = 0, | |
drop_desc_p: float = 0, | |
device: tp.Union[torch.device, str] = "cpu", | |
): | |
super().__init__() | |
self.device = device | |
self.merge_text_conditions_p = merge_text_conditions_p | |
self.drop_desc_p = drop_desc_p | |
self.conditioners = nn.ModuleDict(conditioners) | |
def text_conditions(self): | |
return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)] | |
def wav_conditions(self): | |
return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)] | |
def has_wav_condition(self): | |
return len(self.wav_conditions) > 0 | |
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]: | |
"""Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly. | |
This should be called before starting any real GPU work to avoid synchronization points. | |
This will return a dict matching conditioner names to their arbitrary tokenized representations. | |
Args: | |
inputs (list[ConditioningAttribres]): List of ConditioningAttributes objects containing | |
text and wav conditions. | |
""" | |
assert all([type(x) == ConditioningAttributes for x in inputs]), \ | |
"got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]" \ | |
f" but types were {set([type(x) for x in inputs])}" | |
output = {} | |
text = self._collate_text(inputs) | |
wavs = self._collate_wavs(inputs) | |
assert set(text.keys() | wavs.keys()).issubset(set(self.conditioners.keys())), \ | |
f"got an unexpected attribute! Expected {self.conditioners.keys()}, got {text.keys(), wavs.keys()}" | |
for attribute, batch in chain(text.items(), wavs.items()): | |
output[attribute] = self.conditioners[attribute].tokenize(batch) | |
return output | |
def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]: | |
"""Compute pairs of `(embedding, mask)` using the configured conditioners | |
and the tokenized representations. The output is for example: | |
{ | |
"genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])), | |
"description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])), | |
... | |
} | |
Args: | |
tokenized (dict): Dict of tokenized representations as returned by `tokenize()`. | |
""" | |
output = {} | |
for attribute, inputs in tokenized.items(): | |
condition, mask = self.conditioners[attribute](inputs) | |
output[attribute] = (condition, mask) | |
return output | |
def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]: | |
"""Given a list of ConditioningAttributes objects, compile a dictionary where the keys | |
are the attributes and the values are the aggregated input per attribute. | |
For example: | |
Input: | |
[ | |
ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...), | |
ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...), | |
] | |
Output: | |
{ | |
"genre": ["Rock", "Hip-hop"], | |
"description": ["A rock song with a guitar solo", "A hip-hop verse"] | |
} | |
""" | |
batch_per_attribute: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list) | |
def _merge_conds(cond, merge_text_conditions_p=0, drop_desc_p=0): | |
def is_valid(k, v): | |
k_valid = k in ['key', 'bpm', 'genre', 'moods', 'instrument'] | |
v_valid = v is not None and isinstance(v, (int, float, str, list)) | |
return k_valid and v_valid | |
def process_value(v): | |
if isinstance(v, (int, float, str)): | |
return v | |
if isinstance(v, list): | |
return ", ".join(v) | |
else: | |
RuntimeError(f"unknown type for text value! ({type(v), v})") | |
desc = cond.text['description'] | |
meta_data = "" | |
if random.uniform(0, 1) < merge_text_conditions_p: | |
meta_pairs = [f'{k}: {process_value(v)}' for k, v in cond.text.items() if is_valid(k, v)] | |
random.shuffle(meta_pairs) | |
meta_data = ". ".join(meta_pairs) | |
desc = desc if not random.uniform(0, 1) < drop_desc_p else None | |
if desc is None: | |
desc = meta_data if len(meta_data) > 1 else None | |
else: | |
desc = desc.rstrip('.') + ". " + meta_data | |
cond.text['description'] = desc.strip() if desc else None | |
if self.training and self.merge_text_conditions_p: | |
for sample in samples: | |
_merge_conds(sample, self.merge_text_conditions_p, self.drop_desc_p) | |
texts = [x.text for x in samples] | |
for text in texts: | |
for condition in self.text_conditions: | |
batch_per_attribute[condition].append(text[condition]) | |
return batch_per_attribute | |
def _collate_wavs(self, samples: tp.List[ConditioningAttributes]): | |
"""Generate a dict where the keys are attributes by which we fetch similar wavs, | |
and the values are Tensors of wavs according to said attribtues. | |
*Note*: by the time the samples reach this function, each sample should have some waveform | |
inside the "wav" attribute. It should be either: | |
1. A real waveform | |
2. A null waveform due to the sample having no similar waveforms (nullified by the dataset) | |
3. A null waveform due to it being dropped in a dropout module (nullified by dropout) | |
Args: | |
samples (tp.List[ConditioningAttributes]): List of ConditioningAttributes samples. | |
Returns: | |
dict: A dicionary mapping an attribute name to wavs. | |
""" | |
wavs = defaultdict(list) | |
lens = defaultdict(list) | |
paths = defaultdict(list) | |
out = {} | |
for sample in samples: | |
for attribute in self.wav_conditions: | |
wav, length, path = sample.wav[attribute] | |
wavs[attribute].append(wav.flatten()) | |
lens[attribute].append(length) | |
paths[attribute].append(path) | |
# stack all wavs to a single tensor | |
for attribute in self.wav_conditions: | |
stacked_wav, _ = collate(wavs[attribute], dim=0) | |
out[attribute] = WavCondition(stacked_wav.unsqueeze(1), | |
torch.cat(lens['self_wav']), paths[attribute]) # type: ignore | |
return out | |
class ConditionFuser(StreamingModule): | |
"""Condition fuser handles the logic to combine the different conditions | |
to the actual model input. | |
Args: | |
fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse | |
each condition. For example: | |
{ | |
"prepend": ["description"], | |
"sum": ["genre", "bpm"], | |
"cross": ["description"], | |
} | |
cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention. | |
cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used. | |
""" | |
FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"] | |
def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False, | |
cross_attention_pos_emb_scale: float = 1.0): | |
super().__init__() | |
assert all( | |
[k in self.FUSING_METHODS for k in fuse2cond.keys()] | |
), f"got invalid fuse method, allowed methods: {self.FUSING_MEHTODS}" | |
self.cross_attention_pos_emb = cross_attention_pos_emb | |
self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale | |
self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond | |
self.cond2fuse: tp.Dict[str, str] = {} | |
for fuse_method, conditions in fuse2cond.items(): | |
for condition in conditions: | |
self.cond2fuse[condition] = fuse_method | |
def forward( | |
self, | |
input: Tensor, | |
conditions: tp.Dict[str, ConditionType] | |
) -> tp.Tuple[Tensor, tp.Optional[Tensor]]: | |
"""Fuse the conditions to the provided model input. | |
Args: | |
input (Tensor): Transformer input. | |
conditions (tp.Dict[str, ConditionType]): Dict of conditions. | |
Returns: | |
tp.Tuple[Tensor, Tensor]: The first tensor is the transformer input | |
after the conditions have been fused. The second output tensor is the tensor | |
used for cross-attention or None if no cross attention inputs exist. | |
""" | |
B, T, _ = input.shape | |
if 'offsets' in self._streaming_state: | |
first_step = False | |
offsets = self._streaming_state['offsets'] | |
else: | |
first_step = True | |
offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device) | |
assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \ | |
f"given conditions contain unknown attributes for fuser, " \ | |
f"expected {self.cond2fuse.keys()}, got {conditions.keys()}" | |
cross_attention_output = None | |
for cond_type, (cond, cond_mask) in conditions.items(): | |
op = self.cond2fuse[cond_type] | |
if op == "sum": | |
input += cond | |
elif op == "input_interpolate": | |
cond = rearrange(cond, "b t d -> b d t") | |
cond = F.interpolate(cond, size=input.shape[1]) | |
input += rearrange(cond, "b d t -> b t d") | |
elif op == "prepend": | |
if first_step: | |
input = torch.cat([cond, input], dim=1) | |
elif op == "cross": | |
if cross_attention_output is not None: | |
cross_attention_output = torch.cat([cross_attention_output, cond], dim=1) | |
else: | |
cross_attention_output = cond | |
else: | |
raise ValueError(f"unknown op ({op})") | |
if self.cross_attention_pos_emb and cross_attention_output is not None: | |
positions = torch.arange( | |
cross_attention_output.shape[1], | |
device=cross_attention_output.device | |
).view(1, -1, 1) | |
pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1]) | |
cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb | |
if self._is_streaming: | |
self._streaming_state['offsets'] = offsets + T | |
return input, cross_attention_output | |